1
Miller AM. Review of R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham and Garrett Grolemund. ACM SIGACT News. 2017;48:14–9. doi: 10.1145/3138860.3138865
2
Williams ML, Burnap P, Sloan L. Crime Sensing with Big Data: The Affordances and Limitations of using Open Source Communications to Estimate Crime Patterns. British Journal of Criminology. Published Online First: 31 March 2016. doi: 10.1093/bjc/azw031
3
Chen X, Cho Y, Jang SY. Crime prediction using Twitter sentiment and weather. 2015 Systems and Information Engineering Design Symposium. IEEE 2015:63–8.
4
Wang M, Gerber MS. Using Twitter for Next-Place Prediction, with an Application to Crime Prediction. 2015 IEEE Symposium Series on Computational Intelligence. IEEE 2015:941–8.
5
Ristea A, Langford C, Leitner M. Relationships between crime and Twitter activity around stadiums. 2017 25th International Conference on Geoinformatics. IEEE 2017:1–5.
6
Kostakos, P. Public perceptions on organised crime, Mafia, and Terrorism: A big data analysis based on Twitter and Google Trends. International Journal of Cyber Criminology. ;12:282–99. doi: 10.5281/zenodo.1467919
7
Almehmadi A, Joudaki Z, Jalali R. Language usage on Twitter predicts crime rates. Proceedings of the 10th International Conference on Security of Information and Networks - SIN ’17. ACM Press 2017:307–10.
8
Pfeffer J, Mayer K, Morstatter F. Tampering with Twitter’s Sample API. EPJ Data Science. 2018;7. doi: 10.1140/epjds/s13688-018-0178-0
9
Solymosi R, Bowers KJ, Fujiyama T. Crowdsourcing Subjective Perceptions of Neighbourhood Disorder: Interpreting Bias in Open Data. The British Journal of Criminology. 2018;58:944–67. doi: 10.1093/bjc/azx048
10
Founta, Antigoni-Maria. Large Scale Crowdsourcing and Characterization of Twitter Abusive Behavior.
11
HTML basics | MDN. https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
12
R Web Scraping Tutorial with rvest (article) - DataCamp. https://www.datacamp.com/community/tutorials/r-web-scraping-rvest
13
Web scraping tutorial in R – Towards Data Science. https://towardsdatascience.com/web-scraping-tutorial-in-r-5e71fd107f32
14
Learn To Create Your Own Datasets — Web Scraping in R. https://towardsdatascience.com/learn-to-create-your-own-datasets-web-scraping-in-r-f934a31748a5
15
Hadley Wickham. Easily Harvest (Scrape) Web Pages [R package rvest version 0.3.2].
16
ElSherief, Mai. Hate Lingo: A Target-based Linguistic Analysis of Hate Speech in Social Media. Published Online First: 2018.
17
14 Strings | R for Data Science. https://r4ds.had.co.nz/strings.html
18
Replication of Chapter 5 of <em>Quantitative Social Science: An Introduction</em> • quanteda. https://quanteda.io/articles/pkgdown/replication/qss.html
19
Example: textual data visualization • quanteda. https://quanteda.io/articles/pkgdown/examples/plotting.html
20
Kleinberg, Bennett. Identifying the sentiment styles of YouTube’s vloggers.
21
Pérez-Rosas, Verónica. Automatic Detection of Fake News.
22
Kuhn M, Johnson K. Applied predictive modeling. New York, NY: Springer 2013.
23
Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Second editon. New York: Springer Verlag 2009.
24
An Introduction to Machine Learning with R. https://lgatto.github.io/IntroMachineLearningWithR/unsupervised-learning.html
25
R: Unsupervised Learning | DataCamp. https://www.datacamp.com/courses/unsupervised-learning-in-r
26
Coveney PV, Dougherty ER, Highfield RR. Big data need big theory too. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2016;374. doi: 10.1098/rsta.2016.0153
27
Quijano-Sánchez L, Liberatore F, Camacho-Collados J, et al. Applying automatic text-based detection of deceptive language to police reports: Extracting behavioral patterns from a multi-step classification model to understand how we lie to the police. Knowledge-Based Systems. 2018;149:155–68. doi: 10.1016/j.knosys.2018.03.010
28
Kadar C, Pletikosa I. Mining large-scale human mobility data for long-term crime prediction. EPJ Data Science. 2018;7. doi: 10.1140/epjds/s13688-018-0150-z
29
Burnap P, Williams ML. Us and them: identifying cyber hate on Twitter across multiple protected characteristics. EPJ Data Science. 2016;5. doi: 10.1140/epjds/s13688-016-0072-6