[1]
Great Britain. Audit Commission for Local Authorities and the National Health Service in England and Wales., What Seems to Be the Matter Communication (National Health Service Report). Stationery Office [Online]. Available: https://webarchive.nationalarchives.gov.uk/20150410163038/http://archive.audit-commission.gov.uk/auditcommission/aboutus/publications/pages/national-reports-and-studies-archive.aspx.html
[2]
‘An information leaflet for surgical patients.’, Annals of The Royal College of Surgeons of England, vol. 65, no. 4, 1983 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494353/
[3]
Department of Health, ‘Toolkit for Producing Patient Information, Version 2’. Crown copyright, London, 2003 [Online]. Available: https://www.uea.ac.uk/documents/246046/0/Toolkit+for+producing+patient+information.pdf
[4]
M. Garner, Z. Ning, and J. Francis, ‘A framework for the evaluation of patient information leaflets’, Health Expectations, vol. 15, no. 3, pp. 283–294, Sep. 2012, doi: 10.1111/j.1369-7625.2011.00665.x.
[5]
‘Prescription information leaflets: a pilot study in general practice.’, British Medical Journal (Clinical research ed.), vol. 287, no. 6400, 1983 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1549423/
[6]
M. P. Berthelsen, E. Husu, S. B. Christensen, K. P. Prahm, J. Vissing, and B. R. Jensen, ‘Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy’, Neuromuscular Disorders, vol. 24, no. 6, pp. 492–498, Jun. 2014, doi: 10.1016/j.nmd.2014.03.001.
[7]
E. H. Cup et al., ‘Exercise Therapy and Other Types of Physical Therapy for Patients With Neuromuscular Diseases: A Systematic Review’, Archives of Physical Medicine and Rehabilitation, vol. 88, no. 11, pp. 1452–1464, Nov. 2007, doi: 10.1016/j.apmr.2007.07.024.
[8]
N. B. Voet, E. L. van der Kooi, I. I. Riphagen, E. Lindeman, B. G. van Engelen, and A. C. Geurts, ‘Strength training and aerobic exercise training for muscle disease’, Cochrane Database of Systematic Reviews, Jul. 2013, doi: 10.1002/14651858.CD003907.pub4.
[9]
M.-L. Sveen et al., ‘Resistance training in patients with limb-girdle and becker muscular dystrophies’, Muscle & Nerve, vol. 47, no. 2, pp. 163–169, Feb. 2013, doi: 10.1002/mus.23491.
[10]
T. D. Jeppesen et al., ‘Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy’, Brain, vol. 129, no. 12, pp. 3402–3412, Jun. 2006, doi: 10.1093/brain/awl149.
[11]
‘Balance and walking involvement in facioscapulohumeral dystrophy: a pilot study on the effects of custom lower limb orthoses - European Journal of Physical and Rehabilitation Medicine 2013 April;49(2):169-78 - Minerva Medica - Journals’. [Online]. Available: https://www.minervamedica.it/en/journals/europa-medicophysica/article.php?cod=R33Y2013N02A0169
[12]
Institute of Neurology, Queen Square and National Hospital for Neurology and Neurosurgery (London, England), Neurology: a Queen Square textbook, Second edition. Chichester, West Sussex, UK: John Wiley & Sons, Inc, 2016 [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118486160
[13]
‘Neuromuscular Disease Center’. [Online]. Available: https://neuromuscular.wustl.edu/
[14]
R. J. Barohn, M. M. Dimachkie, and C. E. Jackson, ‘A Pattern Recognition Approach to Patients with a Suspected Myopathy’, Neurologic Clinics, vol. 32, no. 3, pp. 569–593, Aug. 2014, doi: 10.1016/j.ncl.2014.04.008.
[15]
D. A. Jones, A. de Haan, and J. M. Round, Skeletal muscle from molecules to movement: a textbook of muscle physiology for sport, exercise, physiotherapy and medicine. Edinburgh: Churchill Livingstone, 2004.
[16]
By:Gordon, AM (Gordon, AM); Homsher, E (Homsher, E); Regnier, M (Regnier, M), ‘Regulation of contraction in striated muscle’, PHYSIOLOGICAL REVIEWS    PHYSIOLOGICAL REVIEWS, vol. 80, no. 2, pp. 853–924, 2000 [Online]. Available: http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=C49BOGnSGP9s3PqA3ow&page=1&doc=1
[17]
‘Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence.’, The Journal of Physiology, vol. 495, no. Pt 2, 1996 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160815/
[18]
S. D. R. Harridge et al., ‘Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans’, Pflügers Archiv - European Journal of Physiology, vol. 432, no. 5, pp. 913–920, Sep. 1996, doi: 10.1007/s004240050215.
[19]
S. Hunter, M. White, and M. Thompson, ‘Techniques to Evaluate Elderly Human Muscle Function: A Physiological Basis’, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 53A, no. 3, pp. B204–B216, May 1998, doi: 10.1093/gerona/53A.3.B204.
[20]
T. D. O’Brien, N. D. Reeves, V. Baltzopoulos, D. A. Jones, and C. N. Maganaris, ‘In vivo measurements of muscle specific tension in adults and children’, Experimental Physiology, vol. 95, no. 1, pp. 202–210, Jan. 2010, doi: 10.1113/expphysiol.2009.048967.
[21]
P. J. Atherton and K. Smith, ‘Muscle protein synthesis in response to nutrition and exercise’, The Journal of Physiology, vol. 590, no. 5, pp. 1049–1057, Mar. 2012, doi: 10.1113/jphysiol.2011.225003.
[22]
K. Baar, ‘Using Molecular Biology to Maximize Concurrent Training’, Sports Medicine, vol. 44, no. S2, pp. 117–125, Nov. 2014, doi: 10.1007/s40279-014-0252-0.
[23]
M. J. Rennie, H. Wackerhage, E. E. Spangenburg, and F. W. Booth, ‘Control of the Size of the Human Muscle Mass’, Annual Review of Physiology, vol. 66, no. 1, pp. 799–828, Mar. 2004, doi: 10.1146/annurev.physiol.66.052102.134444.
[24]
F. Kadi, ‘Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement’, British Journal of Pharmacology, vol. 154, no. 3, pp. 522–528, Jun. 2008, doi: 10.1038/bjp.2008.118.
[25]
C. P. Velloso, ‘Regulation of muscle mass by growth hormone and IGF-I’, British Journal of Pharmacology, vol. 154, no. 3, pp. 557–568, Jun. 2008, doi: 10.1038/bjp.2008.153.
[26]
G. R. Marcotte, D. W. D. West, and K. Baar, ‘The Molecular Basis for Load-Induced Skeletal Muscle Hypertrophy’, Calcified Tissue International, vol. 96, no. 3, pp. 196–210, Mar. 2015, doi: 10.1007/s00223-014-9925-9.
[27]
I. M. Egner, J. C. Bruusgaard, E. Eftestøl, and K. Gundersen, ‘A cellular memory mechanism aids overload hypertrophy in muscle long after an episodic exposure to anabolic steroids’, The Journal of Physiology, vol. 591, no. 24, pp. 6221–6230, Dec. 2013, doi: 10.1113/jphysiol.2013.264457.
[28]
P. J. Atherton and K. Smith, ‘Muscle protein synthesis in response to nutrition and exercise’, The Journal of Physiology, vol. 590, no. 5, pp. 1049–1057, Mar. 2012, doi: 10.1113/jphysiol.2011.225003.
[29]
R. H. Fitts et al., ‘Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres’, The Journal of Physiology, vol. 588, no. 18, pp. 3567–3592, Sep. 2010, doi: 10.1113/jphysiol.2010.188508.
[30]
By:Jones, SW (Jones, SW); Hill, RJ (Hill, RJ); Krasney, PA (Krasney, PA); O’Conner, B (O’Conner, B); Peirce, N (Peirce, N); Greenhaff, PL (Greenhaff, PL), ‘Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass’, FASEB JOURNAL    FASEB JOURNAL, vol. 18, no. 6, 2004, doi: 10.1096/fj.03-1228fje. [Online]. Available: http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=C49BOGnSGP9s3PqA3ow&page=1&doc=1
[31]
M. J. Rennie, H. Wackerhage, E. E. Spangenburg, and F. W. Booth, ‘Control of the Size of the Human Muscle Mass’, Annual Review of Physiology, vol. 66, no. 1, pp. 799–828, Mar. 2004, doi: 10.1146/annurev.physiol.66.052102.134444.
[32]
T. Shavlakadze and M. Grounds, ‘Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat’, BioEssays, vol. 28, no. 10, pp. 994–1009, Oct. 2006, doi: 10.1002/bies.20479.
[33]
Z. A. Puthucheary et al., ‘Acute Skeletal Muscle Wasting in Critical Illness’, JAMA, vol. 310, no. 15, Oct. 2013, doi: 10.1001/jama.2013.278481.
[34]
M. P. Wiggs, ‘Can endurance exercise preconditioning prevention disuse muscle atrophy?’, Frontiers in Physiology, vol. 6, Mar. 2015, doi: 10.3389/fphys.2015.00063.
[35]
K. Baar, ‘Using Molecular Biology to Maximize Concurrent Training’, Sports Medicine, vol. 44, no. S2, pp. 117–125, Nov. 2014, doi: 10.1007/s40279-014-0252-0.
[36]
D. M. Craig et al., ‘Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis’, Frontiers in Physiology, vol. 6, Oct. 2015, doi: 10.3389/fphys.2015.00296.
[37]
B. Hoier and Y. Hellsten, ‘Exercise-Induced Capillary Growth in Human Skeletal Muscle and the Dynamics of VEGF’, Microcirculation, vol. 21, no. 4, pp. 301–314, May 2014, doi: 10.1111/micc.12117.
[38]
D. G. Hardie and K. Sakamoto, ‘AMPK: A Key Sensor of Fuel and Energy Status in Skeletal Muscle’, Physiology, vol. 21, no. 1, pp. 48–60, Feb. 2006, doi: 10.1152/physiol.00044.2005.
[39]
J. A. Hawley, M. Hargreaves, M. J. Joyner, and J. R. Zierath, ‘Integrative Biology of Exercise’, Cell, vol. 159, no. 4, pp. 738–749, Nov. 2014, doi: 10.1016/j.cell.2014.10.029.
[40]
D. Briggs and J. E. Morgan, ‘Recent progress in satellite cell/myoblast engraftment - relevance for therapy’, FEBS Journal, vol. 280, no. 17, pp. 4281–4293, Sep. 2013, doi: 10.1111/febs.12273.
[41]
P. S. Zammit, J. P. Golding, Y. Nagata, V. Hudon, T. A. Partridge, and J. R. Beauchamp, ‘Muscle satellite cells adopt divergent fates’, The Journal of Cell Biology, vol. 166, no. 3, pp. 347–357, Aug. 2004, doi: 10.1083/jcb.200312007.
[42]
L. Boldrin and J. E. Morgan, ‘Activating muscle stem cells: therapeutic potential in muscle diseases’, Current Opinion in Neurology, vol. 20, no. 5, pp. 577–582, Oct. 2007, doi: 10.1097/WCO.0b013e3282ef5919.
[43]
L. Boldrin, P. S. Zammit, and J. E. Morgan, ‘Satellite cells from dystrophic muscle retain regenerative capacity’, Stem Cell Research, vol. 14, no. 1, pp. 20–29, Jan. 2015, doi: 10.1016/j.scr.2014.10.007.
[44]
J. Ross et al., ‘Defects in Glycosylation Impair Satellite Stem Cell Function and Niche Composition in the Muscles of the Dystrophic Large                              Mouse’, STEM CELLS, vol. 30, no. 10, pp. 2330–2341, Oct. 2012, doi: 10.1002/stem.1197.
[45]
‘Neuropathology and Applied Neurobiology’, vol. Volume 43, Issue 1 [Online]. Available: https://onlinelibrary.wiley.com/toc/13652990/2017/43/1
[46]
V. Dubowitz, C. A. Sewry, and A. Oldfors, Muscle biopsy: a practical approach, Fourth edition. [Philadelphia, Pa.]: Saunders Elsevier, 2013.
[47]
K. G. Hollingsworth, P. L. de Sousa, V. Straub, and P. G. Carlier, ‘Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: Consensus recommendations from two TREAT-NMD NMR workshops, 2 May 2010, Stockholm, Sweden, 1–2 October 2009, Paris, France’, Neuromuscular Disorders, vol. 22, pp. S54–S67, Oct. 2012, doi: 10.1016/j.nmd.2012.06.005.
[48]
M. P. Wattjes and D. Fischer, Neuromuscular imaging. New York: Springer, 2013 [Online]. Available: http://ucl.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3320980190004761&institutionId=4761&customerId=4760
[49]
S. C. Forbes et al., ‘Magnetic Resonance Imaging and Spectroscopy Assessment of Lower Extremity Skeletal Muscles in Boys with Duchenne Muscular Dystrophy: A Multicenter Cross Sectional Study’, PLoS ONE, vol. 9, no. 9, Sep. 2014, doi: 10.1371/journal.pone.0106435.
[50]
G. H. Glover and E. Schneider, ‘Three-point dixon technique for true water/fat decomposition withB0 inhomogeneity correction’, Magnetic Resonance in Medicine, vol. 18, no. 2, pp. 371–383, Apr. 1991, doi: 10.1002/mrm.1910180211.
[51]
R. J. Willcocks et al., ‘Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort’, Annals of Neurology, vol. 79, no. 4, pp. 535–547, Apr. 2016, doi: 10.1002/ana.24599.
[52]
J.-Y. Hogrel et al., ‘Longitudinal functional and NMR assessment of upper limbs in Duchenne muscular dystrophy’, Neurology, vol. 86, no. 11, pp. 1022–1030, Mar. 2016, doi: 10.1212/WNL.0000000000002464.
[53]
H. K. Kim et al., ‘Quantitative Skeletal Muscle MRI: Part 2, MR Spectroscopy and T2 Relaxation Time Mapping—Comparison Between Boys With Duchenne Muscular Dystrophy and Healthy Boys’, American Journal of Roentgenology, vol. 205, no. 2, pp. W216–W223, Aug. 2015, doi: 10.2214/AJR.14.13755.
[54]
F. Muntoni, S. Torelli, and A. Ferlini, ‘Dystrophin and mutations: one gene, several proteins, multiple phenotypes’, The Lancet Neurology, vol. 2, no. 12, pp. 731–740, Dec. 2003, doi: 10.1016/S1474-4422(03)00585-4.
[55]
K. Bushby et al., ‘Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management’, The Lancet Neurology, vol. 9, no. 1, pp. 77–93, Jan. 2010, doi: 10.1016/S1474-4422(09)70271-6.
[56]
K. Bushby et al., ‘Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care’, The Lancet Neurology, vol. 9, no. 2, pp. 177–189, Feb. 2010, doi: 10.1016/S1474-4422(09)70272-8.
[57]
V. Ricotti et al., ‘Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy’, Journal of Neurology, Neurosurgery & Psychiatry, vol. 84, no. 6, pp. 698–705, Jun. 2013, doi: 10.1136/jnnp-2012-303902.
[58]
N. M. Goemans et al., ‘Systemic Administration of PRO051 in Duchenne’s Muscular Dystrophy’, New England Journal of Medicine, vol. 364, no. 16, pp. 1513–1522, Apr. 2011, doi: 10.1056/NEJMoa1011367.
[59]
J. R. Mendell et al., ‘Eteplirsen for the treatment of Duchenne muscular dystrophy’, Annals of Neurology, vol. 74, no. 5, pp. 637–647, Nov. 2013, doi: 10.1002/ana.23982.
[60]
J. R. Mendell et al., ‘Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy’, Annals of Neurology, vol. 79, no. 2, pp. 257–271, Feb. 2016, doi: 10.1002/ana.24555.
[61]
M. Kinali et al., ‘Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study’, The Lancet Neurology, vol. 8, no. 10, pp. 918–928, Oct. 2009, doi: 10.1016/S1474-4422(09)70211-X.
[62]
S. Cirak et al., ‘Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study’, The Lancet, vol. 378, no. 9791, pp. 595–605, Aug. 2011, doi: 10.1016/S0140-6736(11)60756-3.
[63]
K. Bushby et al., ‘Ataluren treatment of patients with nonsense mutation dystrophinopathy’, Muscle & Nerve, vol. 50, no. 4, pp. 477–487, Oct. 2014, doi: 10.1002/mus.24332.
[64]
S. Paganoni and A. Amato, ‘Electrodiagnostic Evaluation of Myopathies’, Physical Medicine and Rehabilitation Clinics of North America, vol. 24, no. 1, pp. 193–207, Feb. 2013, doi: 10.1016/j.pmr.2012.08.017.
[65]
A. Fuglsang-Frederiksen, ‘The role of different EMG methods in evaluating myopathy’, Clinical Neurophysiology, vol. 117, no. 6, pp. 1173–1189, Jun. 2006, doi: 10.1016/j.clinph.2005.12.018.
[66]
P. Machado, S. Brady, and M. G. Hanna, ‘Update in inclusion body myositis’, Current Opinion in Rheumatology, vol. 25, no. 6, pp. 763–771, Nov. 2013, doi: 10.1097/01.bor.0000434671.77891.9a.
[67]
P. M. Machado, M. M. Dimachkie, and R. J. Barohn, ‘Sporadic inclusion body myositis’, Current Opinion in Neurology, vol. 27, no. 5, pp. 591–598, Oct. 2014, doi: 10.1097/WCO.0000000000000129.
[68]
P. M. Machado et al., ‘Ongoing Developments in Sporadic Inclusion Body Myositis’, Current Rheumatology Reports, vol. 16, no. 12, Dec. 2014, doi: 10.1007/s11926-014-0477-9.
[69]
M. Ahmed et al., ‘Targeting protein homeostasis in sporadic inclusion body myositis’, Science Translational Medicine, vol. 8, no. 331, pp. 331ra41-331ra41, Mar. 2016, doi: 10.1126/scitranslmed.aad4583.
[70]
M. Needham and F. L. Mastaglia, ‘Sporadic inclusion body myositis: A review of recent clinical advances and current approaches to diagnosis and treatment’, Clinical Neurophysiology, vol. 127, no. 3, pp. 1764–1773, Mar. 2016, doi: 10.1016/j.clinph.2015.12.011.
[71]
R. Schröder and B. Schoser, ‘Myofibrillar Myopathies: A Clinical and Myopathological Guide’, Brain Pathology, vol. 19, no. 3, pp. 483–492, Jul. 2009, doi: 10.1111/j.1750-3639.2009.00289.x.
[72]
A. A. Amato and S. A. Greenberg, ‘Inflammatory Myopathies’, CONTINUUM: Lifelong Learning in Neurology, vol. 19, pp. 1615–1633, Dec. 2013, doi: 10.1212/01.CON.0000440662.26427.bd.
[73]
M. Olivé, R. A. Kley, and L. G. Goldfarb, ‘Myofibrillar myopathies’, Current Opinion in Neurology, vol. 26, no. 5, pp. 527–535, Oct. 2013, doi: 10.1097/WCO.0b013e328364d6b1.
[74]
P.-O. Carstens and J. Schmidt, ‘Diagnosis, pathogenesis and treatment of myositis: recent advances’, Clinical & Experimental Immunology, vol. 175, no. 3, pp. 349–358, Mar. 2014, doi: 10.1111/cei.12194.
[75]
M. C. Dalakas, ‘Inflammatory Muscle Diseases’, New England Journal of Medicine, vol. 372, no. 18, pp. 1734–1747, Apr. 2015, doi: 10.1056/NEJMra1402225.
[76]
B. T. Darras, D. C. De Vivo, and H. R. Jones, Neuromuscular disorders of infancy, childhood, and adolescence: a clinician’s approach. Philadelphia, Penn. ; London: Butterworth-Heinemann, 2003.
[77]
M. T. C. Baioni and C. R. Ambiel, ‘Spinal muscular atrophy: diagnosis, treatment and future prospects’, Jornal de Pediatria, vol. 86, no. 4, pp. 261–270, Aug. 2010, doi: 10.2223/JPED.1988.
[78]
S. Rudnik-Schöneborn, I. Hausmanowa-Petrusewicz, J. Borkowska, and K. Zerres, ‘The Predictive Value of Achieved Motor Milestones Assessed in 441 Patients with Infantile Spinal Muscular Atrophy Types II and III’, European Neurology, vol. 45, no. 3, pp. 174–181, 2001, doi: 10.1159/000052118.
[79]
B. S. Russman, C. R. Buncher, M. White, F. J. Samaha, and S. T. Iannaccone, ‘Function changes in spinal muscular atrophy II and III’, Neurology, vol. 47, no. 4, pp. 973–976, Oct. 1996, doi: 10.1212/WNL.47.4.973.
[80]
C. H. Wang et al., ‘Consensus Statement for Standard of Care in Spinal Muscular Atrophy’, Journal of Child Neurology, vol. 22, no. 8, pp. 1027–1049, Aug. 2007, doi: 10.1177/0883073807305788.
[81]
E. Mercuri, E. Bertini, and S. T. Iannaccone, ‘Childhood spinal muscular atrophy: controversies and challenges’, The Lancet Neurology, vol. 11, no. 5, pp. 443–452, May 2012, doi: 10.1016/S1474-4422(12)70061-3.
[82]
C. E. M. Hollak and R. Lachmann, Eds., Inherited Metabolic Disease in Adults, vol. 1. Oxford University Press, 2016 [Online]. Available: http://www.oxfordmedicine.com/view/10.1093/med/9780199972135.001.0001/med-9780199972135
[83]
Nancy D Leslie, ‘Very Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency’, Gene Reviews, 2018 [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK6816/
[84]
Thomas Wieser, ‘Carnitine Palmitoyltransferase II Deficiency’, Gene Reviews, 2017 [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1253/
[85]
Miguel A Martín, ‘Glycogen Storage Disease Type V’, Gene Reviews, 2014 [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1344/
[86]
Nancy Leslie, ‘Pompe Disease’, Gene Reviews, 2017 [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1261/
[87]
M. C. Ørngreen and J. Vissing, ‘Treatment Opportunities in Patients With Metabolic Myopathies’, Current Treatment Options in Neurology, vol. 19, no. 11, Nov. 2017, doi: 10.1007/s11940-017-0473-2.
[88]
S. E. Olpin, E. Murphy, R. J. Kirk, R. W. Taylor, and R. Quinlivan, ‘The investigation and management of metabolic myopathies’, Journal of Clinical Pathology, vol. 68, no. 6, pp. 410–417, Jun. 2015, doi: 10.1136/jclinpath-2014-202808.
[89]
B. Feingold et al., ‘Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association’, Circulation, vol. 136, no. 13, Sep. 2017, doi: 10.1161/CIR.0000000000000526.
[90]
E. Matthews and M. G. Hanna, ‘Skeletal muscle channelopathies’, in Oxford Textbook of Neuromuscular Disorders, D. Hilton-Jones and M. R. Turner, Eds. Oxford University Press, 2014, pp. 316–325 [Online]. Available: http://oxfordmedicine.com/view/10.1093/med/9780199698073.001.0001/med-9780199698073-chapter-31
[91]
C. E. M. Hollak and R. Lachmann, Eds., Inherited Metabolic Disease in Adults, vol. 1. Oxford University Press, 2016 [Online]. Available: http://www.oxfordmedicine.com/view/10.1093/med/9780199972135.001.0001/med-9780199972135
[92]
J. M. Saudubray, M. R. Baumgartner, and J. Walter, Eds., Inborn metabolic diseases: diagnosis and treatment, 6th edition. Berlin: Springer, 2016.
[93]
G. F. Hoffmann, J. Zschocke, and W. L. Nyhan, Eds., Inherited metabolic diseases: a clinical approach, Second edition. Berlin: Springer, 2017.