[1]
Ab-Ghani, Z. et al. 2007. Effect of remineralization/demineralization cycles on mineral profiles of Fuji IX Fast in vitro using electron probe microanalysis. Australian Dental Journal. 52, 4 (Dec. 2007), 276–281. DOI:https://doi.org/10.1111/j.1834-7819.2007.tb00502.x.
[2]
Adabo, G.L. et al. 1999. Effect of disinfectant agents on dimensional stability of elastomeric impression materials. The Journal of Prosthetic Dentistry. 81, 5 (May 1999), 621–624. DOI:https://doi.org/10.1016/S0022-3913(99)70219-2.
[3]
Akerboom, H.B.M. et al. 1993. Long-term evaluation and rerestoration of amalgam restorations. Community Dentistry and Oral Epidemiology. 21, 1 (Feb. 1993), 45–48. DOI:https://doi.org/10.1111/j.1600-0528.1993.tb00718.x.
[4]
Andersson , M. et al. 1998. PROCERA: A new way to achieve an all-ceramic crown . Quintessence International. 29, 5 (1998), 185–196.
[5]
ANUSAVICE, K. J. Strengthening of Feldspathic Porcelain by Ion Exchange and Tempering. Journal of Dental Research. 71, 71, 1134–1138.
[6]
Beier, U.S. et al. 2007. Quality of impressions using hydrophilic polyvinyl siloxane in a clinical study of 249 patients. The International Journal of Prosthodontics . 20, 3 (2007), 270–274.
[7]
Bergman, M.A. 1999. The Clinical performance of ceramic inlays: A review. Australian Dental Journal. 44, 3 (Sep. 1999), 157–168. DOI:https://doi.org/10.1111/j.1834-7819.1999.tb00217.x.
[8]
Botelho, M.G. 2003. Inhibitory Effects on Selected Oral Bacteria of Antibacterial Agents Incorporated in a Glass Ionomer Cement. Caries Research. 37, 2 (2003), 108–114. DOI:https://doi.org/10.1159/000069019.
[9]
Botelho, M.G. 2003. Inhibitory Effects on Selected Oral Bacteria of Antibacterial Agents Incorporated in a Glass Ionomer Cement. Caries Research. 37, 2 (2003), 108–114. DOI:https://doi.org/10.1159/000069019.
[10]
BRAGA, R. et al. 2005. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dental Materials. 21, 10 (Oct. 2005), 962–970. DOI:https://doi.org/10.1016/j.dental.2005.04.018.
[11]
Branemark, P.I. et al. 1969. Intra-Osseous Anchorage of Dental Prostheses:I. Experimental Studies, Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, Informa Healthcare. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. 3, 2 (1969), 81–100. DOI:https://doi.org/9036699.
[12]
Brännström , M. and Nyborg, H. 1969. Points in the experiental study of pulpal response to restorative materials. Odontologisk tidskrift. 77, (1969), 421–426.
[13]
Brown, D. 2005. Article. Dental Update. Leading Dental Journal for CPD. 32, 10 (2005), 583–586.
[14]
Brown, D. 2004. Materials for impressions. Dental Update. Leading Dental Journal for CPD. 31, 1 (2004), 40–45.
[15]
Browne, R.M. 1994. Animal tests for biocompatibility of dental materials—relevance, advantages and limitations. Journal of Dentistry. 22, (Jan. 1994), S21–S24. DOI:https://doi.org/10.1016/0300-5712(94)90035-3.
[16]
Buonocore, M.G. 1955. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. Journal of Dental Research. 34, 6 (1955), 849–853.
[17]
Burke, F. 1996. Fracture resistance of teeth restored with dentin-bonded crowns: the effect of increased tooth preparation. Quintessence international. 27, 2 (1996), 115–121.
[18]
Burke, F. et al. 2002. Materials for Restoration of Primary Teeth: 2. Glass Ionomer Derivatives and Compomers . Dental Update. Leading Dental Journal for CPD. 29, 1 (2002), 10–17.
[19]
Burke, F. et al. 2009. The current status of materials for posterior composite restorations: the advent of low shrink. Dental Update. 36, 7 (2009), 401–409.
[20]
Burke, F. 2005. Trends in Indirect Dentistry: 3. Luting Materials . Dental Update. Leading Dental Journal for CPD. 32, 5 (2005), 251–260.
[21]
Burke, F. 2005. Trends in indirect Dentistry: 4. Performance of Adhesive Restoratives. Dental Update. Leading Dental Journal for CPD. 32, 6 (2005), 312–325.
[22]
Burke, F.J.T. and Qualtrough, A.J.E. 2000. Follow-up Evaluation of a Series of Dentin-Bonded Ceramic Restorations. Journal of Esthetic and Restorative Dentistry. 12, 1 (Jan. 2000), 16–22. DOI:https://doi.org/10.1111/j.1708-8240.2000.tb00194.x.
[23]
Carrotte, P. 2004. Endodontics: Part 7 Preparing the root canal. British Dental Journal. 197, 10 (Nov. 2004), 603–613. DOI:https://doi.org/10.1038/sj.bdj.4811823.
[24]
Ceyhan, J.A. et al. 2003. The effect of tray selection, viscosity of impression material, and sequence of pour on the accuracy of dies made from dual-arch impressions. The Journal of Prosthetic Dentistry. 90, 2 (Aug. 2003), 143–149. DOI:https://doi.org/10.1016/S0022-3913(03)00276-2.
[25]
Chai, J. et al. 1998. Clinically relevant mechanical properties of elastomeric impression materials. The International Journal of Prosthodontics . 11, 3 (1998), 219–223.
[26]
Chee, W. and Jivraj, S. 2006. Impression techniques for implant dentistry. British Dental Journal. 201, 7 (Oct. 2006), 429–432. DOI:https://doi.org/10.1038/sj.bdj.4814118.
[27]
CHEN, M. et al. 2006. Low shrinkage light curable nanocomposite for dental restorative material. Dental Materials. 22, 2 (Feb. 2006), 138–145. DOI:https://doi.org/10.1016/j.dental.2005.02.012.
[28]
CHO, L.-R. et al. 2002. Effect of tooth brushing and thermal cycling on a surface change of ceromers finished with different methods. Journal of Oral Rehabilitation. 29, 9 (Sep. 2002), 816–822. DOI:https://doi.org/10.1046/j.1365-2842.2002.00877.x.
[29]
Chris and Ellakwa, A.E. 2003. DENTAL MATERIALS Fibre-reinforced Composites in Restorative Dentistry . Dental Update. Leading Dental Journal for CPD. 30, 6 (2003), 300–306.
[30]
Christensen, G. 2007. Laboratories want better impressions. Journal of the American Dental Association. 138, 4 (2007), 527–529. DOI:https://doi.org/10.14219/jada.archive.2007.0207.
[31]
Collins, C.J. and Bryant, R.W. 1992. Finishing of amalgam restorations: a three-year clinical study. Journal of Dentistry. 20, 4 (Aug. 1992), 202–206. DOI:https://doi.org/10.1016/0300-5712(92)90074-M.
[32]
Combe, E. and Burke, F. 2000. Contemporary Resin-based Composite Materials for Direct Placement Restorations: Packables, Flowables and Others. Dental Update. Leading Dental Journal for CPD. 27, 7 (2000), 326–336.
[33]
Conrad, H.J. et al. 2007. Current ceramic materials and systems with clinical recommendations: A systematic review. The Journal of Prosthetic Dentistry. 98, 5 (Nov. 2007), 389–404. DOI:https://doi.org/10.1016/S0022-3913(07)60124-3.
[34]
Cook, W.D. and Johannson, M. 1987. The influence of postcuring on the fracture properties of photo-cured dimethacrylate based dental composite resin. Journal of Biomedical Materials Research. 21, 8 (Aug. 1987), 979–989. DOI:https://doi.org/10.1002/jbm.820210804.
[35]
Culbertson, B.M. 2006. New polymeric materials for use in glass-ionomer cements. Journal of Dentistry. 34, 8 (Sep. 2006), 556–565. DOI:https://doi.org/10.1016/j.jdent.2005.08.008.
[36]
Davidson, C.L. and Feilzer, A.J. 1997. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. Journal of Dentistry. 25, 6 (Nov. 1997), 435–440. DOI:https://doi.org/10.1016/S0300-5712(96)00063-2.
[37]
De Munck, J. et al. 2005. A Critical Review of the Durability of Adhesion to Tooth Tissue: Methods and Results. Journal of Dental Research. 84, 2 (Feb. 2005), 118–132. DOI:https://doi.org/10.1177/154405910508400204.
[38]
Denry, I. L. Effect of Ion Exchange on the Microstructure, Strength, and Thermal Expansion Behavior of a Leucite-reinforced Porcelain. Effect of Ion Exchange on the Microstructure, Strength, and Thermal Expansion Behavior of a Leucite-reinforced Porcelain. Journal of Dental Research. 77, 4, 583–588.
[39]
Donly, K.J. et al. 1999. A clinical comparison of resin composite inaly and onlay posterior restorations and cast-gold restorations at 7 year . Quintessence International. 30, 3 (1999), 163–168.
[40]
Donovan, T.E. and Chee, W.W. 2004. A review of contemporary impression materials and techniques. The dental clinics of North America. 48, 2 (2004), 445–470.
[41]
Eick, G. et al. 1997. Current concepts on adhesion to dentin. Critical reviews in oral biology and medicine. 8, 3 (1997), 306–335. DOI:https://doi.org/10.1177/10454411970080030501.
[42]
Eley, B.M. 1997. The future of dental amalgam: a review of the literature. Part 1: Dental amalgam structure and corrosion. British Dental Journal. 182, 7 (Apr. 1997), 247–249.
[43]
Eley, B.M. 1997. The future of dental amalgam: a review of the literature. Part 2: Mercury exposure in dental practice. British Dental Journal. 182, 8 (Apr. 1997), 293–297.
[44]
Eley, B.M. 1997. The future of dental amalgam: a review of the literature. Part 3: Mercury exposure from amalgam restorations in dental patients. British Dental Journal. 182, 9 (May 1997), 333–338.
[45]
Eley, B.M. 1997. The future of dental amalgam: a review of the literature. Part 4: Mercury exposure hazards and risk assessment. British Dental Journal. 182, 10 (May 1997), 373–381. DOI:https://doi.org/10.1038/sj.bdj.4809393.
[46]
Eley, B.M. 1997. The future of dental amalgam: a review of the literature. Part 5: Mercury in the urine, blood and body organs from amalgam fillings. British Dental Journal. 182, 11 (Jun. 1997), 413–417.
[47]
Eley, B.M. 1997. The future of dental amalgam: a review of the literature. Part 6: Possible harmful effects of mercury from dental amalgam. British Dental Journal. 182, 12 (Jun. 1997), 455–459.
[48]
Eley, B.M. 1997. The future of dental amalgam: a review of the literature. Part 7: Possible alternative materials to amalgam for the restoration of posterior teeth. British Dental Journal. 183, 1 (Jul. 1997), 11–14.
[49]
Etman, M.K. and Woolford, M.J. 2010. Three-year clinical evaluation of two ceramic crown systems: A preliminary study. The Journal of Prosthetic Dentistry. 103, 2 (Feb. 2010), 80–90. DOI:https://doi.org/10.1016/S0022-3913(10)60010-8.
[50]
Exterkate, R.A.M. et al. 2005. Effect of Fluoride-Releasing Filling Materials on Underlying Dentinal Lesions in vitro. Caries Research. 39, 6 (2005), 509–513. DOI:https://doi.org/10.1159/000088188.
[51]
Federick, D. and Caputo, A. 1997. Comparing the accuracy of reversible hydrocolloid and elastomeric impression materials. Journal of the American Dental Association. 128, 2 (1997), 183–188. DOI:https://doi.org/10.14219/jada.archive.1997.0162.
[52]
Feilzer, A.J. et al. 1987. Setting stress in composite resin in relation to configuration of the restoration. Journal of Dental Research. 66, 11 (1987), 1636–1639.
[53]
Fissore, B. et al. 1991. Load fatigue of teeth restored by a dentin bonding agent and a posterior composite resin. The Journal of Prosthetic Dentistry. 65, 1 (Jan. 1991), 80–85. DOI:https://doi.org/10.1016/0022-3913(91)90054-Z.
[54]
Frencken, J.E. et al. 1998. ART restorations and glass ionomer sealants in Zimbabwe: survival after 3 years. Community Dentistry and Oral Epidemiology. 26, 6 (Dec. 1998), 372–381. DOI:https://doi.org/10.1111/j.1600-0528.1998.tb01975.x.
[55]
Giordano, R. 2000. Impression materials: basic properties. General dentistry. 48, 5 (2000), 510–516.
[56]
Giordano, R. 2006. Materials for chairside CAD/CAM-produced restorations . Journal of the American Dental Association. 137, 9 Supp 1 (2006), S14–S21. DOI:https://doi.org/10.14219/jada.archive.2006.0397.
[57]
Giordano, R.A. et al. 1995. Flexural strength of an infused ceramic, glass ceramic, and feldspathic porcelain. The Journal of Prosthetic Dentistry. 73, 5 (May 1995), 411–418. DOI:https://doi.org/10.1016/S0022-3913(05)80067-8.
[58]
Gladys, S. Comparative physico-mechanical characterisation of new hybrid restorative materials with contemporary glass-ionomer and resin composite restorative materials. Journal of Dental Research. 76, 4, 883–894.
[59]
Goldberg, M. et al. 1994. Clinical testing of dental materials— histological considerations. Journal of Dentistry. 22, (Jan. 1994), S25–S28. DOI:https://doi.org/10.1016/0300-5712(94)90036-1.
[60]
Gruythuysen, R.J.M. et al. 1996. 15-year evaluation of Class II amalgam restorations. Community Dentistry and Oral Epidemiology. 24, 3 (Jun. 1996), 207–210. DOI:https://doi.org/10.1111/j.1600-0528.1996.tb00843.x.
[61]
Guazzato, M. et al. 2004. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dental Materials. 20, 5 (Jun. 2004), 449–456. DOI:https://doi.org/10.1016/j.dental.2003.05.002.
[62]
Hannig, M. et al. 1999. Self-etching primer vs phosphoric acid: an alternative concept for composite-to-enamel bonding. Operative dentistry. 24, 3 (1999), 172–180.
[63]
Hashimoto, M. et al. 2000. In vivo Degradation of Resin-Dentin Bonds in Humans Over 1 to 3 Years. Journal of Dental Research. 79, 6 (Jun. 2000), 1385–1391. DOI:https://doi.org/10.1177/00220345000790060601.
[64]
Hondrum, S.O. 2001. Changes in properties of nonaqueous elastomeric impression materials after storage of components. The Journal of Prosthetic Dentistry. 85, 1 (Jan. 2001), 73–81. DOI:https://doi.org/10.1067/mpr.2001.112407.
[65]
Hörsted-Bindslev, P. 1994. Clinical testing of dental materials— general clinical aspects. Journal of Dentistry. 22, (Jan. 1994), S29–S32. DOI:https://doi.org/10.1016/0300-5712(94)90037-X.
[66]
Hu, J.-Y. et al. 2002. Restoration of teeth with more-viscous glass ionomer cements following radiation-induced caries. International Dental Journal. 52, 6 (2002), 445–448. DOI:https://doi.org/10.1111/j.1875-595X.2002.tb00640.x.
[67]
Jagger, D.C. and et.al. 2007. The effect of a range of disinfectants on the dimensional accuracy and stability of some impression materials. Journal of prosthodontics and restorative dentistry. 15, 1 (2007), 23–28.
[68]
Johnson, G.H. et al. 2003. The effect of surface moisture on detail reproduction of elastomeric impressions. The Journal of Prosthetic Dentistry. 90, 4 (Oct. 2003), 354–364. DOI:https://doi.org/10.1016/S0022-3913(03)00429-3.
[69]
Jones, D.W. 2008. Has Dental Amalgam Been Torpedoed and Sunk? Journal of Dental Research. 87, 2 (Feb. 2008), 101–102. DOI:https://doi.org/10.1177/154405910808700203.
[70]
Jones, D.W. 1993. The enigma of amalgam in dentistry. Journal of the Canadian Dental Association. 59, 2 (1993), 155–166.
[71]
Kakaboura, A. et al. 1996. An FTIR study on the setting mechanism of resin-modified glass ionomer restoratives. Dental Materials. 12, 3 (1996), 173–178. DOI:https://doi.org/10.1016/S0109-5641(96)80017-0.
[72]
Kanehira, M. et al. 2007. Surface detail reproduction with new elastomeric dental impression materials . Quintessence International . 38, 6 (2007), 479–488.
[73]
Kent, B.E. et al. 1973. The properties of a glass ionomer cement. British Dental Journal. 135, 7 (Oct. 1973), 322–326.
[74]
Kramer, I. and McLean, J. 1952. Alterations in the staining reactions of dentine resulting from a constituent of a new self-polymerising resin. British Dental Journal . 93, (1952), 150–153.
[75]
Krämer, N. et al. 1999. IPS Empress inlays and onlays after four years — a clinical study. Journal of Dentistry. 27, 5 (Jul. 1999), 325–331. DOI:https://doi.org/10.1016/S0300-5712(98)00059-1.
[76]
Krämer, N. and Frankenberger, R. 2001. Dental Materials: Clinical performance of a condensable metal-reinforced glass ionomer cement in primary molars. British Dental Journal. 190, 6 (Mar. 2001), 317–321. DOI:https://doi.org/10.1038/sj.bdj.4800960.
[77]
Lee, S.-Y. et al. 2000. Fluoride ion diffusion from a glass-ionomer cement. Journal of Oral Rehabilitation. 27, 7 (Jul. 2000), 576–586. DOI:https://doi.org/10.1046/j.1365-2842.2000.00554.x.
[78]
Leinfelder, K. 1997. New developments in resin restorative systems. The Journal of the American Dental Association. 128, 5 (1997), 573–581. DOI:https://doi.org/10.14219/jada.archive.1997.0256.
[79]
Leinfelder, K. 1997. New developments in resin restorative systems. New developments in resin restorative systems. 128, 5 (1997), 573–581. DOI:https://doi.org/10.14219/jada.archive.1997.0256.
[80]
Liebenberg, W.H. 2000. Assuring restorative integrity in extensive posterior resin composite restorations: Pushing the envelope . Quintessence International. 31, 3 (2000), 153–164.
[81]
Lutz, F. and Göhring, T.N. 2000. Masters of Esthetic Dentistry. Journal of Esthetic and Restorative Dentistry. 12, 3 (May 2000), 164–171. DOI:https://doi.org/10.1111/j.1708-8240.2000.tb00216.x.
[82]
Magne, P. and Douglas, W.H. 1999. Porcelain veneers: dentin bonding optimization and biomimetic recovery of the crown. The International journal of prosthodontics. 12, 2 (1999), 111–121.
[83]
Martin, N. and Jedynakiewicz, N.M. 1999. Clinical performance of CEREC ceramic inlays: a systematic review. Dental Materials. 15, 1 (Jan. 1999), 54–61. DOI:https://doi.org/10.1016/S0109-5641(99)00014-7.
[84]
Martinez, J.E. et al. 2001. Rheological properties of vinyl polysiloxane impression pastes. Dental Materials. 17, 6 (Nov. 2001), 471–476. DOI:https://doi.org/10.1016/S0109-5641(00)00100-7.
[85]
Matharu, S. et al. 2001. A new in vitro model for the study of microbial microleakage around dental restorations: a preliminary qualitative evaluation. International Endodontic Journal. 34, 7 (Oct. 2001), 547–553. DOI:https://doi.org/10.1046/j.1365-2591.2001.00475.x.
[86]
McCabe, J.F. 1998. Resin-modified glass-ionomers. Biomaterials. 19, 6 (Apr. 1998), 521–527. DOI:https://doi.org/10.1016/S0142-9612(98)00132-X.
[87]
McCabe, J.F. and Walls, A. 2008. Applied dental materials. John Wiley & Sons.
[88]
McCullagh, A. et al. 2005. Making a Good Impression (A ‘How to’ Paper on Dental Alginate) . Dental Update. Leading Dental Journal for CPD. 32, 3 (2005), 169–175.
[89]
Millar, B.J. et al. 1998. In vitro caries inhibition by polyacid-modified composite resins (‘compomers’). Journal of Dentistry. 26, 2 (Mar. 1998), 133–136. DOI:https://doi.org/10.1016/S0300-5712(96)00091-7.
[90]
Millar, B.J. et al. 1997. The effect of a surface wetting agent on void formation in impressions. The Journal of Prosthetic Dentistry. 77, 1 (Jan. 1997), 54–56. DOI:https://doi.org/10.1016/S0022-3913(97)70207-5.
[91]
Moshaverinia, A. et al. 2008. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomaterialia. 4, 2 (Mar. 2008), 432–440. DOI:https://doi.org/10.1016/j.actbio.2007.07.011.
[92]
Moshaverinia, A. et al. 2009. Effects of N-vinylpyrrolidone (NVP) containing polyelectrolytes on surface properties of conventional glass-ionomer cements (GIC). Dental Materials. 25, 10 (Oct. 2009), 1240–1247. DOI:https://doi.org/10.1016/j.dental.2009.05.006.
[93]
Moshaverinia, A. et al. 2008. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dental Materials. 24, 10 (Oct. 2008), 1381–1390. DOI:https://doi.org/10.1016/j.dental.2008.03.008.
[94]
MOSHAVERINIA, A. et al. 2009. Synthesis and characterization of a novel fast-set proline-derivative-containing glass ionomer cement with enhanced mechanical properties. Acta Biomaterialia. 5, 1 (Jan. 2009), 498–507. DOI:https://doi.org/10.1016/j.actbio.2008.06.011.
[95]
Nakajo, K. et al. 2009. Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dental Materials. 25, 6 (Jun. 2009), 703–708. DOI:https://doi.org/10.1016/j.dental.2008.10.014.
[96]
Nakamura, T. et al. 2002. Fracture resistance of pressable glass-ceramic fixed partial dentures. Journal of Oral Rehabilitation. 29, 10 (Oct. 2002), 951–955. DOI:https://doi.org/10.1046/j.1365-2842.2002.00929.x.
[97]
Nissan, J. et al. 2000. Accuracy of three polyvinyl siloxane putty-wash impression techniques. The Journal of Prosthetic Dentistry. 83, 2 (Feb. 2000), 161–165. DOI:https://doi.org/10.1016/S0022-3913(00)80007-4.
[98]
Noble, J. et al. 2008. Nickel allergy and orthodontics, a review and report of two cases. BDJ. 204, 6 (Mar. 2008), 297–300. DOI:https://doi.org/10.1038/bdj.2008.198.
[99]
Osborne, J. 2008. Amalgam: dead or alive? Dental Update. Leading Dental Journal for CPD. 33, 2 (2008), 94–98.
[100]
Otto, T. and De Nisco, S. 2002. Computer--aided direct ceramic restorations: A 10-year prospective clinical study of cerec CAD/CAM inlays and onlays. The International Journal of Prosthodontics . 15, 2 (2002), 122–128.
[101]
Palin, W. and Burke, F. 2005. Article. Dental Update. Leading Dental Journal for CPD. 32, 10 (2005), 566–572.
[102]
Palin, W. and Fleming, G. 2003. Low-shrink monomers for dental restorations. . Dental Update. 30, 3 (2003), 118–122.
[103]
Pamenius, M. and Ohlson, N.G. 1995. Influence of dimensional stability of impression materials on the probability of acceptance of a prosthetic restoration. Biomaterials. 16, 15 (Oct. 1995), 1193–1197. DOI:https://doi.org/10.1016/0142-9612(95)93586-3.
[104]
Peumans, M. and et.al. 2005. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dental Materials. 21, 9 (Sep. 2005), 864–881. DOI:https://doi.org/10.1016/j.dental.2005.02.003.
[105]
Ritchie, K.A. et al. 2004. Mercury vapour levels in dental practices and body mercury levels of dentists and controls. British Dental Journal. 197, 10 (Nov. 2004), 625–632. DOI:https://doi.org/10.1038/sj.bdj.4811831.
[106]
Rosenstiel, S.F. et al. 1993. Strength of a dental glass-ceramic after surface coating. Dental Materials. 9, 4 (Jul. 1993), 274–279. DOI:https://doi.org/10.1016/0109-5641(93)90074-Z.
[107]
Rothwell, M. et al. 1998. The uptake and release of fluoride by ion-leaching cements after exposure to toothpaste. Journal of Dentistry. 26, 7 (Sep. 1998), 591–597. DOI:https://doi.org/10.1016/S0300-5712(97)00035-3.
[108]
Sadowsky, S.J. 2006. An overview of treatment considerations for esthetic restorations: A review of the literature. The Journal of Prosthetic Dentistry. 96, 6 (Dec. 2006), 433–442. DOI:https://doi.org/10.1016/j.prosdent.2006.09.018.
[109]
Sano, H. and et.al. 1995. Nanoleakage: leakage within the hybrid layer. Operative Dentistry. 20, 1 (1995), 18–25.
[110]
Schäfer, E. and Lau, R. 1999. Comparison of cutting efficiency and instrumentation of curved canals with nickel-titanium and stainless-steel instruments. Journal of Endodontics. 25, 6 (Jun. 1999), 427–430. DOI:https://doi.org/10.1016/S0099-2399(99)80272-6.
[111]
Schmalz, G. 1994. Use of cell cultures for toxicity testing of dental materials—advantages and limitations. Journal of Dentistry. 22, (Jan. 1994), S6–S11. DOI:https://doi.org/10.1016/0300-5712(94)90032-9.
[112]
Scott, A. et al. 2004. The national survey of adverse reactions to dental materials in the UK: a preliminary study by the UK Adverse Reactions Reporting Project. British Dental Journal. 196, 8 (Apr. 2004), 471–477. DOI:https://doi.org/10.1038/sj.bdj.4811176.
[113]
Sfikas, P. 1996. Can a dentist ethically remove serviceable amalgam restorations? Journal of the American Dental Association. 127, 5 (1996), 685–687. DOI:https://doi.org/10.14219/jada.archive.1996.0282.
[114]
Shaw, A.J. et al. 1998. Fluoride release from glass-ionomer and compomer restorative materials: 6-month data. Journal of Dentistry. 26, 4 (May 1998), 355–359. DOI:https://doi.org/10.1016/S0300-5712(97)00016-X.
[115]
Sidhu, S.K. and Watson, T.F. 1995. Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. American journal of dentistry. 8, 1 (1995), 59–67.
[116]
Small, I.C.B. et al. 1998. Water sorption in resin-modified glass-ionomer cements: An in vitro comparison with other materials. Biomaterials. 19, 6 (Apr. 1998), 545–550. DOI:https://doi.org/10.1016/S0142-9612(97)00135-X.
[117]
Smith, D.C. 1998. Development of glass-ionomer cement systems. Biomaterials. 19, 6 (Apr. 1998), 467–478. DOI:https://doi.org/10.1016/S0142-9612(97)00126-9.
[118]
Splieth, C. and et.al. 2003. Anaerobic microflora under Class I and Class II composite and amalgam restorations. Quintessence international. 34, 7 (2003), 497–503.
[119]
Stewardson, D.A. 2005. Trends in Indirect Dentistry: 5. Impression Materials and Techniques. Dental Update. Leading Dental Journal for CPD. 32, 7 (2005), 374–393.
[120]
Stokes, A.N. and Hood, J.A.A. 1993. Impact fracture characteristics of intact and crowned human central incisors. Journal of Oral Rehabilitation. 20, 1 (Jan. 1993), 89–95. DOI:https://doi.org/10.1111/j.1365-2842.1993.tb01518.x.
[121]
Sune Larsson, K. 1994. Screening tests for systemic effects of dental materials. Journal of Dentistry. 22, (Jan. 1994), S12–S15. DOI:https://doi.org/10.1016/0300-5712(94)90033-7.
[122]
TAKAHASHI, Y. et al. 2006. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dental Materials. 22, 7 (Jul. 2006), 647–652. DOI:https://doi.org/10.1016/j.dental.2005.08.003.
[123]
Tay, W.M. and Braden, M. 1988. Fluoride ion diffusion from polyalkenoate (glass-ionomer) cements. Biomaterials. 9, 5 (Sep. 1988), 454–456. DOI:https://doi.org/10.1016/0142-9612(88)90012-9.
[124]
Taylor, R.L. et al. 2002. Disinfection procedures: their effect on the dimensional accuracy and surface quality of irreversible hydrocolloid impression materials and gypsum casts. Dental Materials. 18, 2 (Mar. 2002), 103–110. DOI:https://doi.org/10.1016/S0109-5641(01)00027-6.
[125]
Thompson, S.A. 2000. An overview of nickel-titanium alloys used in dentistry. International Endodontic Journal. 33, 4 (Jul. 2000), 297–310. DOI:https://doi.org/10.1046/j.1365-2591.2000.00339.x.
[126]
Touati, Bernard et al. 1999. Esthetic dentistry and ceramic restorations. Martin Dunitz.
[127]
TÜRKÜN, L.S. et al. 2008. Long-Term Antibacterial Effects and Physical Properties of a Chlorhexidine-Containing Glass Ionomer Cement. Journal of Esthetic and Restorative Dentistry. 20, 1 (Feb. 2008), 29–44. DOI:https://doi.org/10.1111/j.1708-8240.2008.00146.x.
[128]
Tyas , M.J. 1992. Clinical studies related to glass ionomers. Operative dentistry. Supp 5 (1992), 191–198.
[129]
Valenti, M. and Valenti , A. 2009. Retrospective survival analysis of 261 lithium disilicate crowns in a private general practice . Quintessence International. 40, 7 (2009), 573–579.
[130]
Van Landuyt, K.L. and et.al. 2007. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 28, 26 (Sep. 2007), 3757–3785. DOI:https://doi.org/10.1016/j.biomaterials.2007.04.044.
[131]
Versluis, A. Do Dental Composites Always Shrink Toward the Light? Journal of Dental Research. 77, 6, 1435–1445.
[132]
Wadhwani, C.P.K. et al. 2005. Accuracy of newly formulated fast-setting elastomeric impression materials. The Journal of Prosthetic Dentistry. 93, 6 (Jun. 2005), 530–539. DOI:https://doi.org/10.1016/j.prosdent.2005.03.007.
[133]
Wahl , M. 2003. Dental materials: A Resin Alternative for Posterior Teeth:Questions and Answers on Dental Amalgam. Dental Update. Leading Dental Journal for CPD. 30, 5 (2003), 256–262.
[134]
Walker, M.P. et al. 2007. Surface Quality and Long-term Dimensional Stability of Current Elastomeric Impression Materials after Disinfection. Journal of Prosthodontics. 16, 5 (Sep. 2007), 343–351. DOI:https://doi.org/10.1111/j.1532-849X.2007.00206.x.
[135]
Walls, A.W.G. et al. 2002. Crowns and other extra-coronal restorations: Resin-bonded metal restorations. British Dental Journal. 193, 3 (Aug. 2002), 135–142. DOI:https://doi.org/10.1038/sj.bdj.4801506.
[136]
Warfvinge, G. 1994. Screening tests for sensitization potential of dental materials. Journal of Dentistry. 22, (Jan. 1994), S16–S20. DOI:https://doi.org/10.1016/0300-5712(94)90034-5.
[137]
Wassell, R.W. et al. 2002. Crowns and extra-coronal restorations: Materials selection. British Dental Journal. 192, 4 (Feb. 2002), 199–211. DOI:https://doi.org/10.1038/sj.bdj.4801334.
[138]
Wassell, R.W. et al. 2002. Crowns and other extra-coronal restorations: Impression materials and technique. British Dental Journal. 192, 12 (Jun. 2002), 679–690. DOI:https://doi.org/10.1038/sj.bdj.4801456.
[139]
Wataha, J.C. 2001. Principles of biocompatibility for dental practitioners. The Journal of Prosthetic Dentistry. 86, 2 (Aug. 2001), 203–209. DOI:https://doi.org/10.1067/mpr.2001.117056.
[140]
Wataha, J.C. and Hanks, C.T. 1996. Biological effects of palladium and risk of using palladium in dental casting alloys. Journal of Oral Rehabilitation. 23, 5 (1996), 309–320. DOI:https://doi.org/10.1111/j.1365-2842.1996.tb00858.x.
[141]
Wiegand, A. et al. 2007. Review on fluoride-releasing restorative materials—Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dental Materials. 23, 3 (Mar. 2007), 343–362. DOI:https://doi.org/10.1016/j.dental.2006.01.022.
[142]
Wiltshire, W. et al. 1996. Article. Quintessence International. 27, 8 (1996), 513–520.
[143]
Xie, D. et al. 2000. Mechanical properties and microstructures of glass-ionomer cements. Dental Materials. 16, 2 (Mar. 2000), 129–138. DOI:https://doi.org/10.1016/S0109-5641(99)00093-7.
[144]
Xu, X. and Burgess, J.O. 2003. Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials. 24, 14 (Jun. 2003), 2451–2461. DOI:https://doi.org/10.1016/S0142-9612(02)00638-5.
[145]
Yap, A.U.J. et al. 2003. Physico-mechanical properties of a fast-set highly viscous GIC restorative. Journal of Oral Rehabilitation. 30, 1 (Jan. 2003), 1–8. DOI:https://doi.org/10.1046/j.1365-2842.2003.01006.x.
[146]
Young, A. 2004. FTIR investigation of monomer polymerisation and polyacid neutralisation kinetics and mechanisms in various aesthetic dental restorative materials. Biomaterials. 25, 5 (Feb. 2004), 823–833. DOI:https://doi.org/10.1016/S0142-9612(03)00599-4.
[147]
Zeng, K. et al. 1998. Evaluation of Mechanical Properties of Dental Ceramic Core Materials in Cobmination With Porcelains . The International journal of prosthodontics. 11, 2 (1998), 183–189.
[148]
1998. Amalgam alternatives - micro-leakage evaluation of clinical procedures. Part I: direct composite/composite inlay/ceramic inlay. Journal of Oral Rehabilitation. 25, 6 (Jun. 1998), 443–447. DOI:https://doi.org/10.1046/j.1365-2842.1998.00257.x.