1
Haylock D, Manning R. Mathematics explained for primary teachers. 6th edition. London: : SAGE Publications 2019.
2
Gifford S. Teaching mathematics 3-5: developing learning in the foundation stage. Maidenhead: : Open UP 2005. https://ebookcentral.proquest.com/lib/ucl/detail.action?docID=287879
3
Haylock D, Cockburn A. Understanding mathematics for young children: a guide for teachers of children 3-7. Fifth edition. London: : SAGE 2017. https://app.kortext.com/Shibboleth.sso/Login?entityID=https://shib-idp.ucl.ac.uk/shibboleth&target=https://app.kortext.com/borrow/284700
4
Cotton T. Understanding and teaching primary mathematics. Third ed. Abingdon, Oxon: : Routledge 2016.
5
Haylock D, Manning R. Mathematics explained for primary teachers. 5th edition. London: : SAGE Publications 2019.
6
Haylock D. Student workbook for mathematics explained for primary teachers. [2nd ed.]. Los Angeles: : SAGE 2014.
7
Suggate J, Davis A, Goulding M. Mathematical knowledge for primary teachers (5th Edition). 4th ed. London: : Routledge 2017.
8
Gifford S. Chapter 8: Number. In: Teaching mathematics 3-5: developing learning in the foundation stage. Maidenhead: : Open UP 2005. 77–103.https://ebookcentral.proquest.com/lib/ucl/detail.action?docID=287879
9
Hughes M. Chapter 4: What’s so hard about two and two? In: Children and number: difficulties in learning mathematics. Oxford: : Basil Blackwell 1986. 37–52.https://contentstore.cla.co.uk/secure/link?id=f048b80f-6e1b-e711-80c9-005056af4099
10
Carruthers E, Worthington M. Young children exploring early calculation. Mathematics teaching 2004;:30–4.https://contentstore.cla.co.uk/secure/link?id=a49723d6-6d1b-e711-80c9-005056af4099
11
Anghileri J. Chapter 4: Addition and Subtraction. In: Teaching number sense. London: : Continuum 2006. 49–70.https://contentstore.cla.co.uk/secure/link?id=e0ba78cc-2342-e711-80cb-005056af4099
12
Thompson I. Chapter 12. Getting your head around mental calculation. In: Issues in teaching numeracy in primary schools. Maidenhead: : Open University Press 2010. 97–103.http://www.vlebooks.com/vleweb/product/openreader?id=UCL&isbn=9780335241545
13
Thompson I. Deconstructing calculation, Part 1: Addition. Mathematics teaching 2007;:14–5.https://contentstore.cla.co.uk/secure/link?id=a59723d6-6d1b-e711-80c9-005056af4099
14
Thompson I. Deconstructing calculation methods, Part 2: Subtraction. Mathematics teaching 2007;:6–8.https://contentstore.cla.co.uk/secure/link?id=a69723d6-6d1b-e711-80c9-005056af4099
15
Anghileri J. Chapter 5: Developing Multiplicative Thinking. In: Developing number sense: progression in the middle years. London: : Continuum 2007. 71–93.https://contentstore.cla.co.uk/secure/link?id=7784ef31-2442-e711-80cb-005056af4099
16
Plunkett S. Decomposition and all that rot. Mathematics in school;:2–5.https://contentstore.cla.co.uk/secure/link?id=f9f450dc-6d1b-e711-80c9-005056af4099
17
Barmby P, Harries T, Higgins S, et al. The array representation and primary children’s understanding and reasoning in multiplication. Educational Studies in Mathematics 2009;70:217–41. doi:10.1007/s10649-008-9145-1
18
Maulfry Worthington, Elizabeth Carruthers. Research Uncovers Children’s Creative Mathematical Thinking. Primary Mathematics (Mathematics Association) 2003;7:21–5.https://www.childrens-mathematics.net/our-publications-1/
19
Cotton T. Chapter 7: Understanding shape. In: Understanding and teaching primary mathematics. London: : Routledge 2014. https://ebookcentral.proquest.com/lib/ucl/reader.action?docID=1682971&ppg=149
20
Kerslake D. Visual Mathematics. Mathematics in school;:34–5.https://contentstore.cla.co.uk/secure/link?id=f8f450dc-6d1b-e711-80c9-005056af4099
21
Van Hiele, Pierre M. Developing Geometric Thinking through Activities That Begin with Play. Teaching Children Mathematics 1999;5:310–6.http://sfx.ucl.ac.uk/sfx_local?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2017-06-13T10%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric&rft_val_fmt=info:ofi/fmt:kev:mtx:article&rft.genre=article&rft.atitle=Developing%20Geometric%20Thinking%20through%20Activities%20That%20Begin%20with%20Play.&rft.jtitle=Teaching%20Children%20Mathematics&rft.btitle=&rft.aulast=&rft.auinit=&rft.auinit1=&rft.auinitm=&rft.ausuffix=&rft.au=van%20Hiele,%20Pierre%20M.&rft.aucorp=&rft.date=1999&rft.volume=5&rft.issue=6&rft.part=&rft.quarter=&rft.ssn=&rft.spage=310&rft.epage=16&rft.pages=310&rft.artnum=&rft.issn=1073-5836&rft.eissn=&rft.isbn=&rft.sici=&rft.coden=&rft_id=info:doi/&rft.object_id=&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc&svc.fulltext=yes&rft_dat=%3Ceric%3EEJ580493%3C/eric%3E%3Curl%3E%3C/url%3E&rft.eisbn=&rft_id=info:oai/&req.language=eng
22
Five Myths of Mastery in Mathematics. https://matrixmathshub.co.uk/wp-content/uploads/2022/12/NAMA-Five-Myths-of-Mastery-in-Mathematics.pdf
23
English R. Chapter 6: Arithmetic with fractions, decimals, percentages and ratios. In: Teaching arithmetic in primary schools. Los Angeles: : SAGE 2013. 89–115.https://contentstore.cla.co.uk/secure/link?id=0579766d-33e2-ea11-80cd-005056af4099
24
Nunes T, Bryant P, Hurry J, et al. Fractions: difficult but crucial in mathematics learning. 2006.https://primarysite-prod-sorted.s3.amazonaws.com/stavertonwilts/UploadedDocument/9c7dd42517224ac3a064a585209fab36/fractions.pdf
25
Hansen A. Number: fractions, decimals and percentages. In: Children’s errors in mathematics. Thousand Oaks, Calif: : SAGE Publications 2014.
26
Haylock D, Manning R. Chapter 4: Key Processes in Mathematical Reasoning. In: Mathematics explained for primary teachers. London: : SAGE Publications 2014. 37–49.https://contentstore.cla.co.uk/secure/link?id=1a1d5558-6e1b-e711-80c9-005056af4099
27
Haylock D, Manning R. Chapter 5: Modelling and Problem Solving. In: Mathematics explained for primary teachers. London: : SAGE Publications 2014. 52–61.https://contentstore.cla.co.uk/secure/link?id=1b1d5558-6e1b-e711-80c9-005056af4099
28
Askew M. Chapter 2: Thinking about learning. In: Transforming primary mathematics: understanding classroom tasks, tools and talk. London: : Routledge 2016. 13–29.http://www.tandfebooks.com/isbn/9781315667256
29
Richard R. Skemp. Relational Understanding and Instrumental Understanding. Mathematics Teaching in the Middle School 2006;12:88–95.http://www.jstor.org/stable/41182357?seq=1#page_scan_tab_contents
30
Rickard C. Data handling. In: Primary mathematics for trainee teachers. Los Angeles: : SAGE 2014. 139–56.https://contentstore.cla.co.uk/secure/link?id=32ffa129-b846-e711-80cb-005056af4099
31
Fox S, Surtees L. Chapter 6: Mathematics and Historical and Geographical Understanding. In: Mathematics across the curriculum: problem-solving, reasoning, and numeracy in primary schools. London: : Continuum 2010. 86–94.https://contentstore.cla.co.uk/secure/link?id=d5673e4b-6e1b-e711-80c9-005056af4099
32
Barmby P, Bilsborough L, Harries T, et al. Data handling. In: Primary mathematics: teaching for understanding. Maidenhead: : Open University Press 2009. https://contentstore.cla.co.uk/secure/link?id=e1da47f6-6d1b-e711-80c9-005056af4099
33
Haylock D, Thangata F. Questioning. In: Key concepts in teaching primary mathematics. London: : SAGE 2007. 155–62.https://sk.sagepub.com/books/key-concepts-in-teaching-primary-mathematics/n38.xml
34
Working with Luke. http://nrich.maths.org/6688
35
Ryan J, Williams J. Chapter 2: Learning from errors and misconceptions. In: Children’s mathematics 4-15: learning from errors and misconceptions. Maidenhead: : Open University P. 2007. 13–30.https://contentstore.cla.co.uk/secure/link?id=dfda47f6-6d1b-e711-80c9-005056af4099
36
Hansen A. Chapter 2: Errors and Misconceptions: the teacher’s role. In: Children’s errors in mathematics. Thousand Oaks, Calif: : SAGE Publications 2014. 11–20.https://contentstore.cla.co.uk/secure/link?id=bf20a351-6e1b-e711-80c9-005056af4099