1.
Krebs, J. E., Goldstein, E. S., Kilpatrick, S. T. & Lewin, B. Lewin’s genes X. (Jones and Bartlett, 2011).
2.
Wood, N. W. Neurogenetics: a guide for clinicians. (Cambridge University Press, 2012).
3.
Pritchard, D. J. & Korf, B. R. Medical genetics at a glance. (Wiley, 2013).
4.
Robinson, T. R. & Wiley InterScience (Online service). Genetics for dummies. (Wiley Pub, 2010).
5.
Amthor, F. Neuroscience for dummies. (Wiley, 2012).
6.
Johns, P. Clinical neuroscience: an illustrated colour text. (Churchill Livingstone, 2014).
7.
Kratz, R. F. Molecular & cell biology for dummies. (Wiley, 2009).
8.
Alberts, B. et al. Essential cell biology. (Garland Science, 2014).
9.
Barker, R. A., Cicchetti, F. & Robinson, E. S. J. Neuroanatomy and neuroscience at a glance. (Wiley Blackwell, 2018).
10.
Levitan, I. B. & Kaczmarek, L. K. The neuron: cell and molecular biology. (Oxford University Press, 2015).
11.
Principles of neural science. (McGraw Hill Medical, 2013).
12.
Diamond, M. C., Scheibel, A. B. & Elson, L. M. The human brain coloring book. vol. 306 (Barnes & Noble Books, 1985).
13.
Neurology: a Queen Square textbook. (Wiley Blackwell, 2016).
14.
Castiello, U. The neuroscience of grasping. Nature Reviews Neuroscience 6, 726–736 (2005).
15.
Davare, M., Kraskov, A., Rothwell, J. C. & Lemon, R. N. Interactions between areas of the cortical grasping network. Current Opinion in Neurobiology 21, 565–570 (2011).
16.
Gerbella, M., Rozzi, S. & Rizzolatti, G. The extended object-grasping network. Experimental Brain Research 235, 2903–2916 (2017).
17.
Goodale, M. A. et al. Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology 4, 604–610 (1994).
18.
Grafton, S. T. The cognitive neuroscience of prehension: recent developments. Experimental Brain Research 204, 475–491 (2010).
19.
Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences 18, 314–320 (1995).
20.
Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience 10, 345–359 (2009).
21.
Lemon, R. N. Descending Pathways in Motor Control. Annual Review of Neuroscience 31, 195–218 (2008).
22.
Picard, N. & Strick, P. L. Imaging the premotor areas. Current Opinion in Neurobiology 11, 663–672 (2001).
23.
Jellinger, K. A. Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts. Movement Disorders 27, 8–30 (2012).
24.
Kumaran, R. & Cookson, M. R. Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease. Human Molecular Genetics 24, R32–R44 (2015).
25.
Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience 18, 101–113 (2017).
26.
Walsh, D. M. & Selkoe, D. J. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nature Reviews Neuroscience 17, 251–260 (2016).
27.
Stefanis, L.  -Synuclein in Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine 2, a009399–a009399 (2012).
28.
Burré, J. The Synaptic Function of α-Synuclein. Journal of Parkinson’s Disease 5, 699–713 (2015).
29.
Xilouri, M., Brekk, O. R. & Stefanis, L. Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies. Movement Disorders 31, 178–192 (2016).
30.
Dehay, B., Vila, M., Bezard, E., Brundin, P. & Kordower, J. H. Alpha-synuclein propagation: New insights from animal models. Movement Disorders 31, 161–168 (2016).
31.
Roosen, D. A. & Cookson, M. R. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration 11, (2016).
32.
Wolpert, D. M. & Ghahramani, Z. Computational principles of movement neuroscience. Nature Neuroscience 3, 1212–1217 (2000).
33.
Friston, K., Mattout, J. & Kilner, J. Action understanding and active inference. Biological Cybernetics 104, 137–160 (2011).
34.
Körding, K. P. & Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences 10, 319–326 (2006).
35.
Johansson, R. S. & Flanagan, J. R. Sensory control of object manipulation. in Sensorimotor Control of Grasping (eds. Nowak, D. A. & Hermsdorfer, J.) 141–160 (Cambridge University Press, 2009). doi:10.1017/CBO9780511581267.012.
36.
Sarlegna, F. R. & Mutha, P. K. The influence of visual target information on the online control of movements. Vision Research 110, 144–154 (2015).
37.
Jakobson, L. S. & Goodale, M. A. Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Experimental Brain Research 86, (1991).
38.
Balendra, R. & Patani, R. Quo vadis motor neuron disease? World Journal of Methodology 6, (2016).
39.
Bäumer, D., Talbot, K. & Turner, M. R. Advances in motor neurone disease. Journal of the Royal Society of Medicine 107, 14–21 (2014).
40.
Lemon, R. N. Descending Pathways in Motor Control. Annual Review of Neuroscience 31, 195–218 (2008).
41.
Dietz, V. & Sinkjaer, T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. The Lancet Neurology 6, 725–733 (2007).
42.
Blackstone, C. Hereditary spastic paraplegia. in Neurogenetics, Part II vol. 148 633–652 (Elsevier, 2018).
43.
Autonomic Failure. vol. 1 (Oxford University Press, 2013).
44.
Iodice, V., Low, D. A., Vichayanrat, E. & Mathias, C. J. Cardiovascular autonomic dysfunction in MSA and Parkinson’s disease: Similarities and differences. Journal of the Neurological Sciences 310, 133–138 (2011).
45.
Iodice, V. & Sandroni, P. Autonomic Neuropathies. CONTINUUM: Lifelong Learning in Neurology 20, 1373–1397 (2014).
46.
Institute of Neurology, Queen Square & National Hospital for Neurology and Neurosurgery (London, England). Neurology: a Queen Square textbook. (John Wiley & Sons, Inc, 2016).
47.
OMIM - Online Mendelian Inheritance in Man. https://www.omim.org/.
48.
Zrinzo, L. The Role of Imaging in the Surgical Treatment of Movement Disorders. Neuroimaging Clinics of North America 20, 125–140 (2010).
49.
Baev, K. V. A New Conceptual Understanding of Brain Function: Basic Mechanisms of Brain-Initiated Normal and Pathological Behaviors. Critical ReviewsTM in Neurobiology 19, 119–202 (2007).
50.
Marsden, C. D. & Obeso, J. A. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 117, 877–897 (1994).
51.
Akram, H. et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clinical 18, 130–142 (2018).