[1]
R. A. Weinberg, The biology of cancer, 2nd ed. New York: Garland Science, 2014.
[2]
D. Hanahan and R. A. Weinberg, ‘The Hallmarks of Cancer’, Cell, vol. 100, no. 1, pp. 57–70, Jan. 2000, doi: 10.1016/S0092-8674(00)81683-9.
[3]
Y. Lazebnik, ‘What are the hallmarks of cancer?’, Nature Reviews Cancer, vol. 10, no. 4, pp. 232–233, Apr. 2010, doi: 10.1038/nrc2827.
[4]
P. A. Jeggo, L. H. Pearl, and A. M. Carr, ‘DNA repair, genome stability and cancer: a historical perspective’, Nature Reviews Cancer, vol. 16, no. 1, pp. 35–42, Dec. 2015, doi: 10.1038/nrc.2015.4.
[5]
W. P. Roos, A. D. Thomas, and B. Kaina, ‘DNA damage and the balance between survival and death in cancer biology’, Nature Reviews Cancer, vol. 16, no. 1, pp. 20–33, Dec. 2015, doi: 10.1038/nrc.2015.2.
[6]
V. Shankaran et al., ‘IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity’, Nature, vol. 410, no. 6832, pp. 1107–1111, Apr. 2001, doi: 10.1038/35074122.
[7]
C. M. Koebel et al., ‘Adaptive immunity maintains occult cancer in an equilibrium state’, Nature, vol. 450, no. 7171, pp. 903–907, Dec. 2007, doi: 10.1038/nature06309.
[8]
F. S. Hodi et al., ‘Improved Survival with Ipilimumab in Patients with Metastatic Melanoma’, New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, Aug. 2010, doi: 10.1056/NEJMoa1003466.
[9]
Robert D. Schreiber, Lloyd J. Old and Mark J. Smyth, ‘Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion’, Science, vol. 331, no. 6024, pp. 1565–1570, 2011 [Online]. Available: http://www.jstor.org/stable/29783923?seq=1#page_scan_tab_contents
[10]
S. L. Topalian et al., ‘Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer’, New England Journal of Medicine, vol. 366, no. 26, pp. 2443–2454, Jun. 2012, doi: 10.1056/NEJMoa1200690.
[11]
S. A. Grupp et al., ‘Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia’, New England Journal of Medicine, vol. 368, no. 16, pp. 1509–1518, Apr. 2013, doi: 10.1056/NEJMoa1215134.
[12]
P. F. Robbins et al., ‘Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1’, Journal of Clinical Oncology, vol. 29, no. 7, pp. 917–924, Mar. 2011, doi: 10.1200/JCO.2010.32.2537.
[13]
T. N. Schumacher and R. D. Schreiber, ‘Neoantigens in cancer immunotherapy’, Science, vol. 348, no. 6230, pp. 69–74, Apr. 2015, doi: 10.1126/science.aaa4971.
[14]
C. A. Klebanoff, S. A. Rosenberg, and N. P. Restifo, ‘Prospects for gene-engineered T cell immunotherapy for solid cancers’, Nature Medicine, vol. 22, no. 1, pp. 26–36, Jan. 2016, doi: 10.1038/nm.4015.
[15]
E. C. Morris and H. J. Stauss, ‘Optimizing T-cell receptor gene therapy for hematologic malignancies’, Blood, vol. 127, no. 26, pp. 3305–3311, Jun. 2016, doi: 10.1182/blood-2015-11-629071.
[16]
C. de Martel et al., ‘Global burden of cancers attributable to infections in 2008: a review and synthetic analysis’, The Lancet Oncology, vol. 13, no. 6, pp. 607–615, Jun. 2012, doi: 10.1016/S1470-2045(12)70137-7.
[17]
H. zur Hausen, ‘Papillomaviruses in the causation of human cancers — a brief historical account’, Virology, vol. 384, no. 2, pp. 260–265, Feb. 2009, doi: 10.1016/j.virol.2008.11.046.
[18]
V. Ajila, H. Shetty, S. Babu, V. Shetty, and S. Hegde, ‘Human Papilloma Virus Associated Squamous Cell Carcinoma of the Head and Neck’, Journal of Sexually Transmitted Diseases, vol. 2015, pp. 1–5, 2015, doi: 10.1155/2015/791024.
[19]
M. E. Spurgeon and P. F. Lambert, ‘Merkel cell polyomavirus: A newly discovered human virus with oncogenic potential’, Virology, vol. 435, no. 1, pp. 118–130, Jan. 2013, doi: 10.1016/j.virol.2012.09.029.
[20]
J. A. Wendzicki, P. S. Moore, and Y. Chang, ‘Large T and small T antigens of Merkel cell polyomavirus’, Current Opinion in Virology, vol. 11, pp. 38–43, Apr. 2015, doi: 10.1016/j.coviro.2015.01.009.
[21]
V. Schinzari, V. Barnaba, and S. Piconese, ‘Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors’, Clinical Microbiology and Infection, vol. 21, no. 11, pp. 969–974, Nov. 2015, doi: 10.1016/j.cmi.2015.06.026.
[22]
Lingyun Geng, ‘Epstein-Barr Virus-associated lymphoproliferative disorders: experimental and clinical developments’, International Journal of Clinical and Experimental Medicine, vol. 8, no. 9, 2015 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658837/
[23]
R. A. Weiss and P. K. Vogt, ‘100 years of Rous sarcoma virus’, The Journal of Experimental Medicine, vol. 208, no. 12, pp. 2351–2355, Nov. 2011, doi: 10.1084/jem.20112160.
[24]
M. Matsuoka and K.-T. Jeang, ‘Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy’, Oncogene, vol. 30, no. 12, pp. 1379–1389, Mar. 2011, doi: 10.1038/onc.2010.537.
[25]
A. Pierangeli, G. Antonelli, and G. Gentile, ‘Immunodeficiency-associated viral oncogenesis’, Clinical Microbiology and Infection, vol. 21, no. 11, pp. 975–983, Nov. 2015, doi: 10.1016/j.cmi.2015.07.009.
[26]
J. M. Reichert, ‘Antibodies to watch in 2017’, mAbs, vol. 9, no. 2, pp. 167–181, Feb. 2017, doi: 10.1080/19420862.2016.1269580.
[27]
J. M. Reichert, ‘Antibodies to watch in 2016’, mAbs, vol. 8, no. 2, pp. 197–204, Feb. 2016, doi: 10.1080/19420862.2015.1125583.
[28]
D. M. Ecker, S. D. Jones, and H. L. Levine, ‘The therapeutic monoclonal antibody market’, mAbs, vol. 7, no. 1, pp. 9–14, Jan. 2015, doi: 10.4161/19420862.2015.989042.
[29]
J. M. Reichert, ‘Marketed therapeutic antibodies compendium’, mAbs, vol. 4, no. 3, pp. 413–415, May 2012, doi: 10.4161/mabs.19931.
[30]
S. Varghese and S. D. Rabkin, ‘Oncolytic herpes simplex virus vectors for cancer virotherapy’, Cancer Gene Therapy, vol. 9, no. 12, pp. 967–978, Dec. 2002, doi: 10.1038/sj.cgt.7700537.
[31]
S. J. Russell, K.-W. Peng, and J. C. Bell, ‘Oncolytic virotherapy’, Nature Biotechnology, vol. 30, no. 7, pp. 658–670, Jul. 2012, doi: 10.1038/nbt.2287.
[32]
H. L. Kaufman, F. J. Kohlhapp, and A. Zloza, ‘Oncolytic viruses: a new class of immunotherapy drugs’, Nature Reviews Drug Discovery, vol. 14, no. 9, pp. 642–662, Sep. 2015, doi: 10.1038/nrd4663.
[33]
C. Larson et al., ‘Going viral: a review of replication-selective oncolytic adenoviruses’, Oncotarget, vol. 6, no. 24, Aug. 2015, doi: 10.18632/oncotarget.5116.
[34]
N. P. Restifo, M. E. Dudley, and S. A. Rosenberg, ‘Adoptive immunotherapy for cancer: harnessing the T cell response’, Nature Reviews Immunology, vol. 12, no. 4, pp. 269–281, Mar. 2012, doi: 10.1038/nri3191.
[35]
S. Gill and C. H. June, ‘Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies’, Immunological Reviews, vol. 263, no. 1, pp. 68–89, Jan. 2015, doi: 10.1111/imr.12243.
[36]
D. M. Barrett, S. A. Grupp, and C. H. June, ‘Chimeric Antigen Receptor– and TCR-Modified T Cells Enter Main Street and Wall Street’, The Journal of Immunology, vol. 195, no. 3, pp. 755–761, Aug. 2015, doi: 10.4049/jimmunol.1500751.
[37]
K. Palucka and J. Banchereau, ‘Cancer immunotherapy via dendritic cells’, Nature Reviews Cancer, vol. 12, no. 4, pp. 265–277, Mar. 2012, doi: 10.1038/nrc3258.