[1]
R. J. Gillespie, ‘Nyholm Memorial Lecture. Ring, cage, and cluster compounds of the main group elements’, Chemical Society Reviews, vol. 8, no. 3, 1979, doi: 10.1039/cs9790800315.
[2]
J. D. Woollins, Non-metal rings, cages, and clusters. Chichester: Wiley, 1988.
[3]
N. N. Greenwood and A. Earnshaw, Chemistry of the elements, 2nd ed. Oxford: Butterworth-Heinemann, 1997.
[4]
R. West and F. G. A. Stone, Multiply bonded main group metals and metalloids, vol. Advances in organometallic chemistry. San Diego: Academic Press, 1996.
[5]
P. W. Atkins, Shriver & Atkins’ inorganic chemistry, 5th ed. Oxford: Oxford University Press, 2010.
[6]
J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic chemistry: principles of structure and reactivity, 4th ed. New York, NY: HarperCollins College Publishers, 1993.
[7]
K. Choy, ‘Chemical vapour deposition of coatings’, Progress in Materials Science, vol. 48, no. 2, pp. 57–170, 2003, doi: 10.1016/S0079-6425(01)00009-3.
[8]
F. A. Cotton, Advanced inorganic chemistry, 6th ed. New York: Wiley, 1999.
[9]
N. N. Greenwood and A. Earnshaw, Chemistry of the elements, 2nd ed. Oxford: Butterworth-Heinemann, 1997.
[10]
C. E. Housecroft, Metal-metal bonded carbonyl dimers and clusters, vol. Oxford chemistry primers. Oxford: Oxford University Press, 1996.
[11]
D. M. P. Mingos and D. J. Wales, Introduction to cluster chemistry, vol. Prentice Hall advanced reference series. Englewood Cliffs, N.J.: Prentice Hall, 1990.
[12]
C. E. Housecroft, Boranes and metallaboranes: structure, bonding and reactivity, 2nd ed., vol. Ellis Horwood series in inorganic chemistry. Hemel Hempstead: Ellis Horwood, 1994.
[13]
D. F. Shriver, H. D. Kaesz, and R. D. Adams, The Chemistry of metal cluster complexes. Cambridge: VCH, 1990.
[14]
S. M. Kauzlarich, Chemistry, structure, and bonding of Zintl phases and ions, vol. The chemistry of metal clusters. New York: VCH, 1996.
[15]
A. Falenty, T. C. Hansen, and W. F. Kuhs, ‘Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate’, Nature, vol. 516, no. 7530, pp. 231–233, Dec. 2014, doi: 10.1038/nature14014.
[16]
Y. Inokuma et al., ‘X-ray analysis on the nanogram to microgram scale using porous complexes’, Nature, vol. 495, no. 7442, pp. 461–466, Mar. 2013, doi: 10.1038/nature11990.
[17]
C. Perez et al., ‘Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy’, Science, vol. 336, no. 6083, pp. 897–901, May 2012, doi: 10.1126/science.1220574.
[18]
M. Kawasumi, ‘The discovery of polymer-clay hybrids’, Journal of Polymer Science Part A: Polymer Chemistry, vol. 42, no. 4, pp. 819–824, Feb. 2004, doi: 10.1002/pola.10961.
[19]
G. A. Ozin, A. C. Arsenault, and L. Cademartiri, Nanochemistry: a chemical approach to nanomaterials, 2nd ed. Cambridge: Royal Society of Chemistry [Online]. Available: https://app.knovel.com/hotlink/toc/id:kpNACANE01/nanochemistry-a-chemical?kpromoter=marc
[20]
J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic chemistry: principles of structure and reactivity, 4th ed. New York, NY: HarperCollins College Publishers, 1993.
[21]
C. N. R. Rao, A. Müller, and A. K. Cheetham, The chemistry of nanomaterials: synthesis, properties and applications. Weinheim: Wiley-VCH, 2004.
[22]
M. De, P. S. Ghosh, and V. M. Rotello, ‘Applications of Nanoparticles in Biology’, Advanced Materials, vol. 20, no. 22, pp. 4225–4241, Nov. 2008, doi: 10.1002/adma.200703183.
[23]
V. Wagner, A. Dullaart, A.-K. Bock, and A. Zweck, ‘The emerging nanomedicine landscape’, Nature Biotechnology, vol. 24, no. 10, pp. 1211–1217, Oct. 2006, doi: 10.1038/nbt1006-1211.
[24]
L. Qu, L. Dai, M. Stone, Z. Xia, and Z. L. Wang, ‘Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off’, Science, vol. 322, no. 5899, pp. 238–242, Oct. 2008, doi: 10.1126/science.1159503.
[25]
Y. Qin, X. Wang, and Z. L. Wang, ‘Microfibre–nanowire hybrid structure for energy scavenging’, Nature, vol. 457, no. 7227, pp. 340–340, Jan. 2009, doi: 10.1038/nature07628.
[26]
F. J. Feher and T. A. Budzichowski, ‘Silasesquioxanes as ligands in inorganic and organometallic chemistry’, Polyhedron, vol. 14, no. 22, pp. 3239–3253, Oct. 1995, doi: 10.1016/0277-5387(95)85009-0.
[27]
R. M. Ormerod, ‘Solid oxide fuel cells’, Chemical Society Reviews, vol. 32, no. 1, pp. 17–28, Dec. 2003, doi: 10.1039/b105764m.
[28]
D. Huber, ‘Synthesis, Properties, and Applications of Iron Nanoparticles’, Small, vol. 1, no. 5, pp. 482–501, May 2005, doi: 10.1002/smll.200500006.
[29]
N. T. K. Thanh and L. A. W. Green, ‘Functionalisation of nanoparticles for biomedical applications’, Nano Today, vol. 5, no. 3, pp. 213–230, Jun. 2010, doi: 10.1016/j.nantod.2010.05.003.
[30]
M. Bar-Sadan, I. Kaplan-Ashiri, and R. Tenne, ‘Inorganic fullerenes and nanotubes: Wealth of materials and morphologies’, The European Physical Journal Special Topics, vol. 149, no. 1, pp. 71–101, Oct. 2007, doi: 10.1140/epjst/e2007-00245-1.
[31]
A. M. Smith and S. Nie, ‘Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering’, Accounts of Chemical Research, vol. 43, no. 2, pp. 190–200, Feb. 2010 [Online]. Available: https://contentstore.cla.co.uk/secure/link?id=29f27d07-800d-f011-81a2-842121568115
[32]
R. Tenne, ‘Inorganic nanotubes and fullerene-like nanoparticles’, Nature Nanotechnology, vol. 1, no. 2, pp. 103–111, Nov. 2006, doi: 10.1038/nnano.2006.62.