1.
Gillespie, R.J.: Nyholm Memorial Lecture. Ring, cage, and cluster compounds of the main group elements. Chemical Society Reviews. 8, (1979). https://doi.org/10.1039/cs9790800315.
2.
Woollins, J.D.: Non-metal rings, cages, and clusters. Wiley, Chichester (1988).
3.
Greenwood, N.N., Earnshaw, A.: Chemistry of the elements. Butterworth-Heinemann, Oxford (1997).
4.
West, R., Stone, F.G.A.: Multiply bonded main group metals and metalloids. Academic Press, San Diego (1996).
5.
Atkins, P.W.: Shriver & Atkins’ inorganic chemistry. Oxford University Press, Oxford (2010).
6.
Huheey, J.E., Keiter, E.A., Keiter, R.L.: Inorganic chemistry: principles of structure and reactivity. HarperCollins College Publishers, New York, NY (1993).
7.
Choy, K.: Chemical vapour deposition of coatings. Progress in Materials Science. 48, 57–170 (2003). https://doi.org/10.1016/S0079-6425(01)00009-3.
8.
Cotton, F.A.: Advanced inorganic chemistry. Wiley, New York (1999).
9.
Greenwood, N.N., Earnshaw, A.: Chemistry of the elements. Butterworth-Heinemann, Oxford (1997).
10.
Housecroft, C.E.: Metal-metal bonded carbonyl dimers and clusters. Oxford University Press, Oxford (1996).
11.
Mingos, D.M.P., Wales, D.J.: Introduction to cluster chemistry. Prentice Hall, Englewood Cliffs, N.J. (1990).
12.
Housecroft, C.E.: Boranes and metallaboranes: structure, bonding and reactivity. Ellis Horwood, Hemel Hempstead (1994).
13.
Shriver, D.F., Kaesz, H.D., Adams, R.D.: The Chemistry of metal cluster complexes. VCH, Cambridge (1990).
14.
Kauzlarich, S.M.: Chemistry, structure, and bonding of Zintl phases and ions. VCH, New York (1996).
15.
Falenty, A., Hansen, T.C., Kuhs, W.F.: Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature. 516, 231–233 (2014). https://doi.org/10.1038/nature14014.
16.
Inokuma, Y., Yoshioka, S., Ariyoshi, J., Arai, T., Hitora, Y., Takada, K., Matsunaga, S., Rissanen, K., Fujita, M.: X-ray analysis on the nanogram to microgram scale using porous complexes. Nature. 495, 461–466 (2013). https://doi.org/10.1038/nature11990.
17.
Perez, C., Muckle, M.T., Zaleski, D.P., Seifert, N.A., Temelso, B., Shields, G.C., Kisiel, Z., Pate, B.H.: Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy. Science. 336, 897–901 (2012). https://doi.org/10.1126/science.1220574.
18.
Kawasumi, M.: The discovery of polymer-clay hybrids. Journal of Polymer Science Part A: Polymer Chemistry. 42, 819–824 (2004). https://doi.org/10.1002/pola.10961.
19.
Ozin, G.A., Arsenault, A.C., Cademartiri, L.: Nanochemistry: a chemical approach to nanomaterials. Royal Society of Chemistry, Cambridge.
20.
Huheey, J.E., Keiter, E.A., Keiter, R.L.: Inorganic chemistry: principles of structure and reactivity. HarperCollins College Publishers, New York, NY (1993).
21.
Rao, C.N.R., Müller, A., Cheetham, A.K.: The chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, Weinheim (2004).
22.
De, M., Ghosh, P.S., Rotello, V.M.: Applications of Nanoparticles in Biology. Advanced Materials. 20, 4225–4241 (2008). https://doi.org/10.1002/adma.200703183.
23.
Wagner, V., Dullaart, A., Bock, A.-K., Zweck, A.: The emerging nanomedicine landscape. Nature Biotechnology. 24, 1211–1217 (2006). https://doi.org/10.1038/nbt1006-1211.
24.
Qu, L., Dai, L., Stone, M., Xia, Z., Wang, Z.L.: Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off. Science. 322, 238–242 (2008). https://doi.org/10.1126/science.1159503.
25.
Qin, Y., Wang, X., Wang, Z.L.: Microfibre–nanowire hybrid structure for energy scavenging. Nature. 457, 340–340 (2009). https://doi.org/10.1038/nature07628.
26.
Feher, F.J., Budzichowski, T.A.: Silasesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron. 14, 3239–3253 (1995). https://doi.org/10.1016/0277-5387(95)85009-0.
27.
Ormerod, R.M.: Solid oxide fuel cells. Chemical Society Reviews. 32, 17–28 (2003). https://doi.org/10.1039/b105764m.
28.
Huber, D.: Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 1, 482–501 (2005). https://doi.org/10.1002/smll.200500006.
29.
Thanh, N.T.K., Green, L.A.W.: Functionalisation of nanoparticles for biomedical applications. Nano Today. 5, 213–230 (2010). https://doi.org/10.1016/j.nantod.2010.05.003.
30.
Bar-Sadan, M., Kaplan-Ashiri, I., Tenne, R.: Inorganic fullerenes and nanotubes: Wealth of materials and morphologies. The European Physical Journal Special Topics. 149, 71–101 (2007). https://doi.org/10.1140/epjst/e2007-00245-1.
31.
Smith, A.M., Nie, S.: Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Accounts of Chemical Research. 43, 190–200 (2010).
32.
Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nature Nanotechnology. 1, 103–111 (2006). https://doi.org/10.1038/nnano.2006.62.