14 Strings | R for Data Science (no date). Available at:
Almehmadi, A., Joudaki, Z. and Jalali, R. (2017) ‘Language usage on Twitter predicts crime rates’, in Proceedings of the 10th International Conference on Security of Information and Networks  - SIN ’17. ACM Press, pp. 307–310. doi: 10.1145/3136825.3136854.
An Introduction to Machine Learning with R (no date). Available at:
Burnap, P. and Williams, M. L. (2016) ‘Us and them: identifying cyber hate on Twitter across multiple protected characteristics’, EPJ Data Science, 5(1). doi: 10.1140/epjds/s13688-016-0072-6.
Chen, X., Cho, Y. and Jang, S. Y. (2015) ‘Crime prediction using Twitter sentiment and weather’, in 2015 Systems and Information Engineering Design Symposium. IEEE, pp. 63–68. doi: 10.1109/SIEDS.2015.7117012.
Coveney, P. V., Dougherty, E. R. and Highfield, R. R. (2016) ‘Big data need big theory too’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2080). doi: 10.1098/rsta.2016.0153.
ElSherief, Mai (2018) ‘Hate Lingo: A Target-based Linguistic Analysis of Hate Speech in Social Media.’ Available at:
Example: textual data visualization • quanteda (no date). Available at:
Founta, Antigoni-Maria (no date) ‘Large Scale Crowdsourcing and Characterization of Twitter Abusive Behavior.’ Available at:,contains,Founta,%20A.-M.,%20Djouvas,%20C.,%20Chatzakou,%20D.,%20Leontiadis,%20I.,%20Blackburn,%20J.,%20Stringhini,%20G.,%20%E2%80%A6%20Kourtellis,%20N.%20(2018)
Hadley Wickham (no date) ‘Easily Harvest (Scrape) Web Pages [R package rvest version 0.3.2].’ Available at:
Hastie, T., Tibshirani, R. and Friedman, J. H. (2009) The elements of statistical learning: data mining, inference, and prediction. Second editon. New York: Springer Verlag. Available at:
HTML basics | MDN (no date). Available at:
Kadar, C. and Pletikosa, I. (2018) ‘Mining large-scale human mobility data for long-term crime prediction’, EPJ Data Science, 7(1). doi: 10.1140/epjds/s13688-018-0150-z.
Kleinberg, Bennett (no date) ‘Identifying the sentiment styles of YouTube’s vloggers.’ Available at:,contains,Kleinberg,%20B.,%20Mozes,%20M.,%20&%20Van%20der%20Vegt,%20I.%20(2018).%20Identifying%20the%20sentiment%20styles%20of%20YouTube%E2%80%99s%20vloggers.%20Proceedings%20of%20the%202018%20Conference%20on%20Empirical%20Methods%20in%20Natural%20Language%20Processing,
Kostakos, P. (no date) ‘Public perceptions on organised crime, Mafia, and Terrorism: A big data analysis based on Twitter and Google Trends’, International Journal of Cyber Criminology, 12(1), pp. 282–299. doi: 10.5281/zenodo.1467919.
Kuhn, M. and Johnson, K. (2013) Applied predictive modeling. New York, NY: Springer. Available at:
Learn To Create Your Own Datasets — Web Scraping in R (no date). Available at:
Miller, A. M. (2017) ‘Review of R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham and Garrett Grolemund’, ACM SIGACT News, 48(3), pp. 14–19. doi: 10.1145/3138860.3138865.
Pfeffer, J., Mayer, K. and Morstatter, F. (2018) ‘Tampering with Twitter’s Sample API’, EPJ Data Science, 7(1). doi: 10.1140/epjds/s13688-018-0178-0.
Pérez-Rosas, Verónica (no date) ‘Automatic Detection of Fake News.’ Available at:,contains,P%C3%A9rez-Rosas,%20V.,%20Kleinberg,%20B.,%20Lefevre,%20A.,%20&%20Mihalcea,%20R.%20(2018).%20Automatic%20Detection%20of%20Fake%20News.%20In%20Proceedings%20of%20the%2027th%20International%20Conference%20on%20Computational%20Linguistics%20(pp.%203391%E2%80%933401).%20Santa%20Fe,%20New%20Mexico,
Quijano-Sánchez, L. et al. (2018) ‘Applying automatic text-based detection of deceptive language to police reports: Extracting behavioral patterns from a multi-step classification model to understand how we lie to the police’, Knowledge-Based Systems, 149, pp. 155–168. doi: 10.1016/j.knosys.2018.03.010.
R Web Scraping Tutorial with rvest (article) - DataCamp (no date). Available at:
R: Unsupervised Learning | DataCamp (no date). Available at:
Replication of Chapter 5 of <em>Quantitative Social Science: An Introduction</em> • quanteda (no date). Available at:
Ristea, A., Langford, C. and Leitner, M. (2017) ‘Relationships between crime and Twitter activity around stadiums’, in 2017 25th International Conference on Geoinformatics. IEEE, pp. 1–5. doi: 10.1109/GEOINFORMATICS.2017.8090933.
Solymosi, R., Bowers, K. J. and Fujiyama, T. (2018) ‘Crowdsourcing Subjective Perceptions of Neighbourhood Disorder: Interpreting Bias in Open Data’, The British Journal of Criminology, 58(4), pp. 944–967. doi: 10.1093/bjc/azx048.
Wang, M. and Gerber, M. S. (2015) ‘Using Twitter for Next-Place Prediction, with an Application to Crime Prediction’, in 2015 IEEE Symposium Series on Computational Intelligence. IEEE, pp. 941–948. doi: 10.1109/SSCI.2015.138.
Web scraping tutorial in R – Towards Data Science (no date). Available at:
Williams, M. L., Burnap, P. and Sloan, L. (2016) ‘Crime Sensing with Big Data: The Affordances and Limitations of using Open Source Communications to Estimate Crime Patterns’, British Journal of Criminology. doi: 10.1093/bjc/azw031.