Akram, H. et al. (2018) ‘Connectivity derived thalamic segmentation in deep brain stimulation for tremor’, NeuroImage: Clinical, 18, pp. 130–142. doi: 10.1016/j.nicl.2018.01.008.
Alberts, B. et al. (2014) Essential cell biology. Fourth edition. New York, NY: Garland Science.
Amthor, F. (2012) Neuroscience for dummies. Mississauga, Ont: Wiley.
Baev, K. V. (2007) ‘A New Conceptual Understanding of Brain Function: Basic Mechanisms of Brain-Initiated Normal and Pathological Behaviors’, Critical ReviewsTM in Neurobiology, 19(2-3), pp. 119–202. doi: 10.1615/CritRevNeurobiol.v19.i2-3.30.
Balendra, R. and Patani, R. (2016) ‘Quo vadis motor neuron disease?’, World Journal of Methodology, 6(1). doi: 10.5662/wjm.v6.i1.56.
Barker, R. A., Barasi, S. and Neal, M. J. (2003) Neuroscience at a glance. 2nd ed. Malden, Mass: Blackwell.
Blackstone, C. (2018) ‘Hereditary spastic paraplegia’, in Neurogenetics, Part II. Elsevier, pp. 633–652. doi: 10.1016/B978-0-444-64076-5.00041-7.
Burré, J. (2015) ‘The Synaptic Function of α-Synuclein’, Journal of Parkinson’s Disease, 5(4), pp. 699–713. doi: 10.3233/JPD-150642.
Bäumer, D., Talbot, K. and Turner, M. R. (2014) ‘Advances in motor neurone disease’, Journal of the Royal Society of Medicine, 107(1), pp. 14–21. doi: 10.1177/0141076813511451.
Castiello, U. (2005) ‘The neuroscience of grasping’, Nature Reviews Neuroscience, 6(9), pp. 726–736. doi: 10.1038/nrn1744.
Clarke, C. et al. (eds) (2016) Neurology: a Queen Square textbook. Second edition. Chichester, West Sussex, UK: Wiley Blackwell. Available at:
Davare, M. et al. (2011) ‘Interactions between areas of the cortical grasping network’, Current Opinion in Neurobiology, 21(4), pp. 565–570. doi: 10.1016/j.conb.2011.05.021.
Dehay, B. et al. (2016) ‘Alpha-synuclein propagation: New insights from animal models’, Movement Disorders, 31(2), pp. 161–168. doi: 10.1002/mds.26370.
Diamond, M. C., Scheibel, A. B. and Elson, L. M. (1985) The human brain coloring book. 1st ed. New York: Barnes & Noble Books.
Dietz, V. and Sinkjaer, T. (2007) ‘Spastic movement disorder: impaired reflex function and altered muscle mechanics’, The Lancet Neurology, 6(8), pp. 725–733. doi: 10.1016/S1474-4422(07)70193-X.
Friston, K., Mattout, J. and Kilner, J. (2011) ‘Action understanding and active inference’, Biological Cybernetics, 104(1-2), pp. 137–160. doi: 10.1007/s00422-011-0424-z.
Gerbella, M., Rozzi, S. and Rizzolatti, G. (2017) ‘The extended object-grasping network’, Experimental Brain Research, 235(10), pp. 2903–2916. doi: 10.1007/s00221-017-5007-3.
Goodale, M. A. et al. (1994) ‘Separate neural pathways for the visual analysis of object shape in perception and prehension’, Current Biology, 4(7), pp. 604–610. doi: 10.1016/S0960-9822(00)00132-9.
Grafton, S. T. (2010) ‘The cognitive neuroscience of prehension: recent developments’, Experimental Brain Research, 204(4), pp. 475–491. doi: 10.1007/s00221-010-2315-2.
Institute of Neurology, Queen Square and National Hospital for Neurology and Neurosurgery (London, England) (2016) Neurology: a Queen Square textbook. Second edition. Edited by C. Clarke et al. Chichester, West Sussex, UK: John Wiley & Sons, Inc. Available at:
Iodice, V. et al. (2011) ‘Cardiovascular autonomic dysfunction in MSA and Parkinson’s disease: Similarities and differences’, Journal of the Neurological Sciences, 310(1-2), pp. 133–138. doi: 10.1016/j.jns.2011.07.014.
Iodice, V. and Sandroni, P. (2014) ‘Autonomic Neuropathies’, CONTINUUM: Lifelong Learning in Neurology, 20, pp. 1373–1397. doi: 10.1212/01.CON.0000455875.76179.b1.
Jakobson, L. S. and Goodale, M. A. (1991) ‘Factors affecting higher-order movement planning: a kinematic analysis of human prehension’, Experimental Brain Research, 86(1). doi: 10.1007/BF00231054.
Jeannerod, M. et al. (1995) ‘Grasping objects: the cortical mechanisms of visuomotor transformation’, Trends in Neurosciences, 18(7), pp. 314–320. doi: 10.1016/0166-2236(95)93921-J.
Jellinger, K. A. (2012) ‘Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts’, Movement Disorders, 27(1), pp. 8–30. doi: 10.1002/mds.23795.
Johansson, R. S. and Flanagan, J. R. (2009a) ‘Coding and use of tactile signals from the fingertips in object manipulation tasks’, Nature Reviews Neuroscience, 10(5), pp. 345–359. doi: 10.1038/nrn2621.
Johansson, R. S. and Flanagan, J. R. (2009b) ‘Sensory control of object manipulation’, in Nowak, D. A. and Hermsdorfer, J. (eds) Sensorimotor Control of Grasping. Cambridge: Cambridge University Press, pp. 141–160. doi: 10.1017/CBO9780511581267.012.
Johns, P. (2014) Clinical neuroscience: an illustrated colour text. Edinburgh: Churchill Livingstone.
Kandel, E. R. et al. (eds) (2013) Principles of neural science. Fifth edition. New York: McGraw Hill Medical. Available at:
Kratz, R. F. (2009) Molecular & cell biology for dummies. Hoboken, NJ: Wiley.
Krebs, J. E. et al. (2011) Lewin’s genes X. International ed. Sudbury, Mass: Jones and Bartlett.
Kumaran, R. and Cookson, M. R. (2015) ‘Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease’, Human Molecular Genetics, 24(R1), pp. R32–R44. doi: 10.1093/hmg/ddv236.
Körding, K. P. and Wolpert, D. M. (2006) ‘Bayesian decision theory in sensorimotor control’, Trends in Cognitive Sciences, 10(7), pp. 319–326. doi: 10.1016/j.tics.2006.05.003.
Lemon, R. N. (2008a) ‘Descending Pathways in Motor Control’, Annual Review of Neuroscience, 31(1), pp. 195–218. doi: 10.1146/annurev.neuro.31.060407.125547.
Lemon, R. N. (2008b) ‘Descending Pathways in Motor Control’, Annual Review of Neuroscience, 31(1), pp. 195–218. doi: 10.1146/annurev.neuro.31.060407.125547.
Levitan, I. B. and Kaczmarek, L. K. (2015) The neuron: cell and molecular biology. Fourth edition. [New York]: Oxford University Press. Available at:
Marsden, C. D. and Obeso, J. A. (1994) ‘The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease’, Brain, 117(4), pp. 877–897. doi: 10.1093/brain/117.4.877.
Mathias, C. J. and Bannister, S. R. (eds) (2013) Autonomic Failure. Oxford University Press. doi: 10.1093/med/9780198566342.001.0001.
OMIM - Online Mendelian Inheritance in Man (no date). Available at:
Picard, N. and Strick, P. L. (2001) ‘Imaging the premotor areas’, Current Opinion in Neurobiology, 11(6), pp. 663–672. doi: 10.1016/S0959-4388(01)00266-5.
Pritchard, D. J. and Korf, B. R. (2013) Medical genetics at a glance. 3rd ed. Chichester: Wiley-Blackwell.
Robinson, T. R. and Wiley InterScience (Online service) (2010) Genetics for dummies. 2nd ed. Hoboken, NJ: Wiley Pub. Available at:
Roosen, D. A. and Cookson, M. R. (2016) ‘LRRK2 at the interface of autophagosomes, endosomes and lysosomes’, Molecular Neurodegeneration, 11(1). doi: 10.1186/s13024-016-0140-1.
Sarlegna, F. R. and Mutha, P. K. (2015) ‘The influence of visual target information on the online control of movements’, Vision Research, 110, pp. 144–154. doi: 10.1016/j.visres.2014.07.001.
Stefanis, L. (2012) ‘ -Synuclein in Parkinson’s Disease’, Cold Spring Harbor Perspectives in Medicine, 2(2), pp. a009399–a009399. doi: 10.1101/cshperspect.a009399.
Surmeier, D. J., Obeso, J. A. and Halliday, G. M. (2017) ‘Selective neuronal vulnerability in Parkinson disease’, Nature Reviews Neuroscience, 18(2), pp. 101–113. doi: 10.1038/nrn.2016.178.
Walsh, D. M. and Selkoe, D. J. (2016) ‘A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration’, Nature Reviews Neuroscience, 17(4), pp. 251–260. doi: 10.1038/nrn.2016.13.
Wolpert, D. M. and Ghahramani, Z. (2000) ‘Computational principles of movement neuroscience’, Nature Neuroscience, 3(Supp), pp. 1212–1217. doi: 10.1038/81497.
Wood, N. W. (2012) Neurogenetics: a guide for clinicians. Cambridge: Cambridge University Press. Available at:
Xilouri, M., Brekk, O. R. and Stefanis, L. (2016) ‘Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies’, Movement Disorders, 31(2), pp. 178–192. doi: 10.1002/mds.26477.
Zrinzo, L. (2010) ‘The Role of Imaging in the Surgical Treatment of Movement Disorders’, Neuroimaging Clinics of North America, 20(1), pp. 125–140. doi: 10.1016/j.nic.2009.08.002.