[1]
Adolphs, R. 2003. Cognitive neuroscience: Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience. 4, 3 (Mar. 2003), 165–178. DOI:https://doi.org/10.1038/nrn1056.
[2]
Bandettini, P.A. 2009. What’s New in Neuroimaging Methods? Annals of the New York Academy of Sciences. 1156, 1 (Mar. 2009), 260–293. DOI:https://doi.org/10.1111/j.1749-6632.2009.04420.x.
[3]
Bechara, A. et al. 2000. Emotion, Decision Making and the Orbitofrontal Cortex. Cerebral Cortex. 10, 3 (Mar. 2000), 295–307. DOI:https://doi.org/10.1093/cercor/10.3.295.
[4]
Behrens, T.E.J. et al. 2013. What is the most interesting part of the brain? Trends in Cognitive Sciences. 17, 1 (Jan. 2013), 2–4. DOI:https://doi.org/10.1016/j.tics.2012.10.010.
[5]
Benton, A.L. 1994. Neuropsychological Assessment. Annual Review of Psychology. 45, 1 (Jan. 1994), 1–23. DOI:https://doi.org/10.1146/annurev.ps.45.020194.000245.
[6]
Bueti, D. and Walsh, V. 2009. The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences. 364, 1525 (Jul. 2009), 1831–1840. DOI:https://doi.org/10.1098/rstb.2009.0028.
[7]
Burgess, P. et al. 2009. Mesulam’s frontal lobe mystery re-examined. Restorative Neurology and Neuroscience. 27, 5 (2009), 493–506. DOI:https://doi.org/10.3233/RNN-2009-0511.
[8]
Butterworth, B. and Walsh, V. 2011. Neural basis of mathematical cognition. Current Biology. 21, 16 (Aug. 2011), R618–R621. DOI:https://doi.org/10.1016/j.cub.2011.07.005.
[9]
Cappelletti, M. et al. 2013. Commonalities for Numerical and Continuous Quantity Skills at Temporo-parietal Junction. Journal of Cognitive Neuroscience. (Dec. 2013), 1–14. DOI:https://doi.org/10.1162/jocn_a_00546.
[10]
Cohen, N. et al. 2014. Peri-encoding predictors of memory encoding and consolidation. Neuroscience & Biobehavioral Reviews. (Nov. 2014). DOI:https://doi.org/10.1016/j.neubiorev.2014.11.002.
[11]
Coles, Michael G. H. and Rugg, M. D. 1995. Event-related brain potentials: an introduction. Chapter 1 in Electrophysiology of mind: event-related brain potentials and cognition. Oxford University Press.
[12]
Corkin, S. 2002. TIMELINEWhat’s new with the amnesic patient H.M.? Nature Reviews Neuroscience. 3, 2 (Feb. 2002), 153–160. DOI:https://doi.org/10.1038/nrn726.
[13]
Cyranoski, D. 2011. Neuroscience: Thought experiment. Nature. 469, 7329 (Jan. 2011), 148–149. DOI:https://doi.org/10.1038/469148a.
[14]
Devlin, J.T. and Watkins, K.E. 2007. Stimulating language: insights from TMS. Brain. 130, 3 (Mar. 2007), 610–622. DOI:https://doi.org/10.1093/brain/awl331.
[15]
Duncan, J. 2001. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience. 2, 11 (Nov. 2001), 820–829.
[16]
Duncan, K.J. et al. 2010. Investigating Occipito-temporal Contributions to Reading with TMS. Journal of Cognitive Neuroscience. 22, 4 (Apr. 2010), 739–750. DOI:https://doi.org/10.1162/jocn.2009.21207.
[17]
Duverne, S. et al. 2009. Effects of Age on the Neural Correlates of Retrieval Cue Processing are Modulated by Task Demands. Journal of Cognitive Neuroscience. 21, 1 (Jan. 2009), 1–17. DOI:https://doi.org/10.1162/jocn.2009.21001.
[18]
Frith, U. and Happé, F. 2005. Autism spectrum disorder. Current Biology. 15, 19 (Oct. 2005), R786–R790. DOI:https://doi.org/10.1016/j.cub.2005.09.033.
[19]
Galli, G. et al. 2013. Available processing resources influence encoding-related brain activity before an event. Cortex. 49, 8 (Sep. 2013), 2239–2248. DOI:https://doi.org/10.1016/j.cortex.2012.10.011.
[20]
Gazzaniga, Ivry and Mangun. A Brief History of Cognitive Neuroscience. Chapter 1 of the textbook. A brief history of cognitive neuroscience. Chapter 1 in Cognitive Neuroscience: The Biology of the Mind [Paperback]. W. W. Norton & Company; 5th International student edition edition (5 Nov 2013). 2–21.
[21]
Gazzaniga, M.S. et al. 2014. Cognitive Control. Chapter 12 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Co.; 4th International student edition.
[22]
Gazzaniga, M.S. et al. 2014. Language. Chapter 11 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company; 4th International student edition.
[23]
Gazzaniga, M.S. et al. 2014. Memory. Chapter 9 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company; 4th International student edition.
[24]
Gazzaniga, M.S. et al. 2014. Social cognition. Chapter 13 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company; 4th International student edition.
[25]
Gilbert, S.J. et al. 2008. Atypical recruitment of medial prefrontal cortex in autism spectrum disorders: An fMRI study of two executive function tasks. Neuropsychologia. 46, 9 (Jul. 2008), 2281–2291. DOI:https://doi.org/10.1016/j.neuropsychologia.2008.03.025.
[26]
Gilbert, S.J. et al. 2006. Functional Specialization within Rostral Prefrontal Cortex (Area 10): A Meta-analysis. Journal of Cognitive Neuroscience. 18, 6 (Jun. 2006), 932–948. DOI:https://doi.org/10.1162/jocn.2006.18.6.932.
[27]
Gilbert, S.J. and Burgess, P.W. 2008. Executive function. Current Biology. 18, 3 (Feb. 2008), R110–R114. DOI:https://doi.org/10.1016/j.cub.2007.12.014.
[28]
Gratton, G. and Fabiani, M. 2001. Shedding light on brain function: the event-related optical signal. Trends in Cognitive Sciences. 5, 8 (Aug. 2001), 357–363. DOI:https://doi.org/10.1016/S1364-6613(00)01701-0.
[29]
Gruber, M.J. and Otten, L.J. 2010. Voluntary Control over Prestimulus Activity Related to Encoding. Journal of Neuroscience. 30, 29 (Jul. 2010), 9793–9800. DOI:https://doi.org/10.1523/JNEUROSCI.0915-10.2010.
[30]
Harvey, B.M. et al. 2013. Topographic Representation of Numerosity in the Human Parietal Cortex. Science. 341, 6150 (Sep. 2013), 1123–1126. DOI:https://doi.org/10.1126/science.1239052.
[31]
Hutchinson, J.B. et al. 2009. Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning & Memory. 16, 6 (May 2009), 343–356. DOI:https://doi.org/10.1101/lm.919109.
[32]
Johnsrude, I., & Hauk, O. 2005. Neuroimaging: techniques for examining human brain function. Chapter 4 in Cognitive psychology: a methods companion. Oxford University Press in association with the Open University.
[33]
Kim, H. 2011. Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 fMRI studies. NeuroImage. 54, 3 (Feb. 2011), 2446–2461. DOI:https://doi.org/10.1016/j.neuroimage.2010.09.045.
[34]
Klein, C. 2010. Philosophical Issues in Neuroimaging. Philosophy Compass. 5, 2 (Feb. 2010), 186–198. DOI:https://doi.org/10.1111/j.1747-9991.2009.00275.x.
[35]
Kosslyn, S.M. If neuroimaging is the answer, what is the question?
[36]
Lee, V.K. and Harris, L.T. 2013. How social cognition can inform social decision making. Frontiers in Neuroscience. 7, (2013). DOI:https://doi.org/10.3389/fnins.2013.00259.
[37]
Levy, I. et al. 2011. Choice from Non-Choice: Predicting Consumer Preferences from Blood Oxygenation Level-Dependent Signals Obtained during Passive Viewing. Journal of Neuroscience. 31, 1 (Jan. 2011), 118–125. DOI:https://doi.org/10.1523/JNEUROSCI.3214-10.2011.
[38]
Logothetis, N.K. 2008. What we can do and what we cannot do with fMRI. Nature. 453, 7197 (Jun. 2008), 869–878. DOI:https://doi.org/10.1038/nature06976.
[39]
Mauk, M.D. and Buonomano, D.V. 2004. THE NEURAL BASIS OF TEMPORAL PROCESSING. Annual Review of Neuroscience. 27, 1 (Jul. 2004), 307–340. DOI:https://doi.org/10.1146/annurev.neuro.27.070203.144247.
[40]
Michael S. Gazzaniga, et al Methods of Cognitive Neuroscience. Chapter 3 of textbook. Methods of cognitive neuroscience.The Biology of the Mind. W. W. Norton & Company; 4th International student edition edition (5 Nov 2013). 72–123.
[41]
Michael S. Gazzaniga, et al 2014. Structure and function of the nervous system. Cognitive neuroscience: the biology of the mind. W.W. Norton. 22–79.
[42]
Miller, E.K. and Cohen, J.D. 2001. An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience. 24, 1 (Mar. 2001), 167–202. DOI:https://doi.org/10.1146/annurev.neuro.24.1.167.
[43]
Moran, J.M. and Zaki, J. 2013. Functional Neuroimaging and Psychology: What Have You Done for Me Lately? Journal of Cognitive Neuroscience. 25, 6 (Jun. 2013), 834–842. DOI:https://doi.org/10.1162/jocn_a_00380.
[44]
Neuroimaging: Separating the Promise from the Pipe Dreams - Dana Foundation: https://www.dana.org/article/neuroimaging-separating-the-promise-from-the-pipe-dreams/.
[45]
Paller, K.A. and Wagner, A.D. 2002. Observing the transformation of experience into memory. Trends in Cognitive Sciences. 6, 2 (Feb. 2002), 93–102. DOI:https://doi.org/10.1016/S1364-6613(00)01845-3.
[46]
Park, H. and Rugg, M.D. 2009. Prestimulus hippocampal activity predicts later recollection. Hippocampus. (2009), NA-NA. DOI:https://doi.org/10.1002/hipo.20663.
[47]
POLDRACK, R. 2006. Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences. 10, 2 (Feb. 2006), 59–63. DOI:https://doi.org/10.1016/j.tics.2005.12.004.
[48]
Priori, A. 2003. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology. 114, 4 (Apr. 2003), 589–595. DOI:https://doi.org/10.1016/S1388-2457(02)00437-6.
[49]
Raichle, M.E. 2009. A brief history of human brain mapping. Trends in Neurosciences. 32, 2 (Feb. 2009), 118–126. DOI:https://doi.org/10.1016/j.tins.2008.11.001.
[50]
Ramnani, N. and Owen, A.M. 2004. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience. 5, 3 (Mar. 2004), 184–194. DOI:https://doi.org/10.1038/nrn1343.
[51]
Rangel, A. et al. 2008. A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience. 9, 7 (Jul. 2008), 545–556. DOI:https://doi.org/10.1038/nrn2357.
[52]
Reite, M. et al. 1999. Magnetoencephalography: applications in psychiatry. Biological Psychiatry. 45, 12 (Jun. 1999), 1553–1563. DOI:https://doi.org/10.1016/S0006-3223(99)00062-1.
[53]
Rippon, G. Electroencephalography. Chapter 10 in Methods in Mind (Cognitive Neuroscience) [Paperback]. MIT Press (18 Sep 2009).
[54]
Rösler, F. and Ranganath, C. 2009. On how to reconcile mind and brain. Neuroimaging of Human MemoryLinking cognitive processes to neural systems. Oxford University Press. 15–24.
[55]
Rugg, M.D. and Thompson-Schill, S.L. 2013. Moving Forward With fMRI Data. Perspectives on Psychological Science. 8, 1 (Jan. 2013), 84–87. DOI:https://doi.org/10.1177/1745691612469030.
[56]
Rugg, M.D. and Vilberg, K.L. 2013. Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology. 23, 2 (Apr. 2013), 255–260. DOI:https://doi.org/10.1016/j.conb.2012.11.005.
[57]
Rugg, M.D. and Wilding, E.L. 2000. Retrieval processing and episodic memory. Trends in Cognitive Sciences. 4, (2000), 108–115.
[58]
Sack, A.T. 2006. Transcranial magnetic stimulation, causal structure–function mapping and networks of functional relevance. Current Opinion in Neurobiology. 16, 5 (Oct. 2006), 593–599. DOI:https://doi.org/10.1016/j.conb.2006.06.016.
[59]
Seyal, M. et al. 1999. Anticipation and execution of a simple reading task enhance corticospinal excitability. Clinical Neurophysiology. 110, 3 (Mar. 1999), 424–429. DOI:https://doi.org/10.1016/S1388-2457(98)00019-4.
[60]
Squire, L.R. et al. 2004. The Medial Temporal Lobe. Annual Review of Neuroscience. 27, 1 (Jul. 2004), 279–306. DOI:https://doi.org/10.1146/annurev.neuro.27.070203.144130.
[61]
Thut, G. and Miniussi, C. 2009. New insights into rhythmic brain activity from TMS–EEG studies. Trends in Cognitive Sciences. 13, 4 (Apr. 2009), 182–189. DOI:https://doi.org/10.1016/j.tics.2009.01.004.
[62]
Uncapher, M.R. and Wagner, A.D. 2009. Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual-attention theory. Neurobiology of Learning and Memory. 91, 2 (Feb. 2009), 139–154. DOI:https://doi.org/10.1016/j.nlm.2008.10.011.
[63]
Verhoeven, J.S. et al. 2010. Neuroimaging of autism. Neuroradiology. 52, 1 (Jan. 2010), 3–14. DOI:https://doi.org/10.1007/s00234-009-0583-y.
[64]
Walsh, V. 2003. A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences. 7, 11 (Nov. 2003), 483–488. DOI:https://doi.org/10.1016/j.tics.2003.09.002.
[65]
Walsh, V. and Cowey, A. 1998. Magnetic stimulation studies of visual cognition. Trends in Cognitive Sciences. 2, 3 (Mar. 1998), 103–110. DOI:https://doi.org/10.1016/S1364-6613(98)01134-6.
[66]
Weber, M.J. and Thompson-Schill, S.L. 2010. Functional Neuroimaging Can Support Causal Claims about Brain Function. Journal of Cognitive Neuroscience. 22, 11 (Nov. 2010), 2415–2416. DOI:https://doi.org/10.1162/jocn.2010.21461.
[67]
White, S.J. et al. 2014. Autistic adolescents show atypical activation of the brain′s mentalizing system even without a prior history of mentalizing problems. Neuropsychologia. 56, (Apr. 2014), 17–25. DOI:https://doi.org/10.1016/j.neuropsychologia.2013.12.013.
[68]
White, S.J. 2013. The Triple I Hypothesis: Taking Another(’s) Perspective on Executive Dysfunction in Autism. Journal of Autism and Developmental Disorders. 43, 1 (Jan. 2013), 114–121. DOI:https://doi.org/10.1007/s10803-012-1550-8.
[69]
Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company; 5th International student edition edition (5 Nov 2013).
[70]
2008. Decision making. Chapter 24 of Principles of cognitive neuroscience. Sinauer Associates.
[71]
Functional magnetic resonance imaging. Chapter 9 in Methods in Mind (Cognitive Neuroscience). Bandettini, P. A. MIT Press (18 Sep 2009).
[72]
Landmarks in human functional brain imaging.
[73]
Structure and function of the nervous system. Chapter 2 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. W. W. Norton & Company; 4th International student edition edition (5 Nov 2013).