1.
Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company; 5th International student edition edition (5 Nov 2013).
2.
Michael S. Gazzaniga, et al: Structure and function of the nervous system. In: Cognitive neuroscience: the biology of the mind. pp. 22–79. W.W. Norton, New York (2014).
3.
Gazzaniga, Ivry and Mangun.: A Brief History of Cognitive Neuroscience. Chapter 1 of the textbook. In: A brief history of cognitive neuroscience. Chapter 1 in Cognitive Neuroscience: The Biology of the Mind [Paperback]. pp. 2–21. W. W. Norton & Company; 5th International student edition edition (5 Nov 2013).
4.
Rösler, F., Ranganath, C.: On how to reconcile mind and brain. In: Neuroimaging of Human MemoryLinking cognitive processes to neural systems. pp. 15–24. Oxford University Press (2009).
5.
Kosslyn, S.M.: If neuroimaging is the answer, what is the question?, http://rstb.royalsocietypublishing.org/content/354/1387/1283.full.pdf.
6.
Neuroimaging: Separating the Promise from the Pipe Dreams - Dana Foundation, https://www.dana.org/article/neuroimaging-separating-the-promise-from-the-pipe-dreams/.
7.
Klein, C.: Philosophical Issues in Neuroimaging. Philosophy Compass. 5, 186–198 (2010). https://doi.org/10.1111/j.1747-9991.2009.00275.x.
8.
Landmarks in human functional brain imaging, https://wellcome.ac.uk/sites/default/files/wtvm052606.pdf.
9.
Moran, J.M., Zaki, J.: Functional Neuroimaging and Psychology: What Have You Done for Me Lately? Journal of Cognitive Neuroscience. 25, 834–842 (2013). https://doi.org/10.1162/jocn_a_00380.
10.
Behrens, T.E.J., Fox, P., Laird, A., Smith, S.M.: What is the most interesting part of the brain? Trends in Cognitive Sciences. 17, 2–4 (2013). https://doi.org/10.1016/j.tics.2012.10.010.
11.
Michael S. Gazzaniga, et al: Methods of Cognitive Neuroscience. Chapter 3 of textbook. In: Methods of cognitive neuroscience.The Biology of the Mind. pp. 72–123. W. W. Norton & Company; 4th International student edition edition (5 Nov 2013).
12.
Bandettini, P.A.: What’s New in Neuroimaging Methods? Annals of the New York Academy of Sciences. 1156, 260–293 (2009). https://doi.org/10.1111/j.1749-6632.2009.04420.x.
13.
Raichle, M.E.: A brief history of human brain mapping. Trends in Neurosciences. 32, 118–126 (2009). https://doi.org/10.1016/j.tins.2008.11.001.
14.
Johnsrude, I., & Hauk, O.: Neuroimaging: techniques for examining human brain function. Chapter 4 in Cognitive psychology: a methods companion. Presented at the (2005).
15.
Functional magnetic resonance imaging. Chapter 9 in Methods in Mind (Cognitive Neuroscience). Bandettini, P. A. Presented at the .
16.
Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature. 453, 869–878 (2008). https://doi.org/10.1038/nature06976.
17.
Rugg, M.D., Thompson-Schill, S.L.: Moving Forward With fMRI Data. Perspectives on Psychological Science. 8, 84–87 (2013). https://doi.org/10.1177/1745691612469030.
18.
Gratton, G., Fabiani, M.: Shedding light on brain function: the event-related optical signal. Trends in Cognitive Sciences. 5, 357–363 (2001). https://doi.org/10.1016/S1364-6613(00)01701-0.
19.
Reite, M., Teale, P., Rojas, D.C.: Magnetoencephalography: applications in psychiatry. Biological Psychiatry. 45, 1553–1563 (1999). https://doi.org/10.1016/S0006-3223(99)00062-1.
20.
Rippon, G.: Electroencephalography. Chapter 10 in Methods in Mind (Cognitive Neuroscience) [Paperback]. Presented at the .
21.
Coles, Michael G. H., Rugg, M. D.: Event-related brain potentials: an introduction. Chapter 1 in Electrophysiology of mind: event-related brain potentials and cognition. Oxford University Press, Oxford (1995).
22.
Cyranoski, D.: Neuroscience: Thought experiment. Nature. 469, 148–149 (2011). https://doi.org/10.1038/469148a.
23.
Walsh, V., Cowey, A.: Magnetic stimulation studies of visual cognition. Trends in Cognitive Sciences. 2, 103–110 (1998). https://doi.org/10.1016/S1364-6613(98)01134-6.
24.
Priori, A.: Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology. 114, 589–595 (2003). https://doi.org/10.1016/S1388-2457(02)00437-6.
25.
Thut, G., Miniussi, C.: New insights into rhythmic brain activity from TMS–EEG studies. Trends in Cognitive Sciences. 13, 182–189 (2009). https://doi.org/10.1016/j.tics.2009.01.004.
26.
POLDRACK, R.: Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences. 10, 59–63 (2006). https://doi.org/10.1016/j.tics.2005.12.004.
27.
Weber, M.J., Thompson-Schill, S.L.: Functional Neuroimaging Can Support Causal Claims about Brain Function. Journal of Cognitive Neuroscience. 22, 2415–2416 (2010). https://doi.org/10.1162/jocn.2010.21461.
28.
Benton, A.L.: Neuropsychological Assessment. Annual Review of Psychology. 45, 1–23 (1994). https://doi.org/10.1146/annurev.ps.45.020194.000245.
29.
Structure and function of the nervous system. Chapter 2 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. Presented at the .
30.
Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Language. Chapter 11 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. In: Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company; 4th International student edition (2014).
31.
Devlin, J.T., Watkins, K.E.: Stimulating language: insights from TMS. Brain. 130, 610–622 (2007). https://doi.org/10.1093/brain/awl331.
32.
Duncan, K.J., Pattamadilok, C., Devlin, J.T.: Investigating Occipito-temporal Contributions to Reading with TMS. Journal of Cognitive Neuroscience. 22, 739–750 (2010). https://doi.org/10.1162/jocn.2009.21207.
33.
Sack, A.T.: Transcranial magnetic stimulation, causal structure–function mapping and networks of functional relevance. Current Opinion in Neurobiology. 16, 593–599 (2006). https://doi.org/10.1016/j.conb.2006.06.016.
34.
Seyal, M., Mull, B., Bhullar, N., Ahmad, T., Gage, B.: Anticipation and execution of a simple reading task enhance corticospinal excitability. Clinical Neurophysiology. 110, 424–429 (1999). https://doi.org/10.1016/S1388-2457(98)00019-4.
35.
Walsh, V.: A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences. 7, 483–488 (2003). https://doi.org/10.1016/j.tics.2003.09.002.
36.
Cappelletti, M., Chamberlain, R., Freeman, E.D., Kanai, R., Butterworth, B., Price, C.J., Rees, G.: Commonalities for Numerical and Continuous Quantity Skills at Temporo-parietal Junction. Journal of Cognitive Neuroscience. 1–14 (2013). https://doi.org/10.1162/jocn_a_00546.
37.
Bueti, D., Walsh, V.: The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences. 364, 1831–1840 (2009). https://doi.org/10.1098/rstb.2009.0028.
38.
Harvey, B.M., Klein, B.P., Petridou, N., Dumoulin, S.O.: Topographic Representation of Numerosity in the Human Parietal Cortex. Science. 341, 1123–1126 (2013). https://doi.org/10.1126/science.1239052.
39.
Mauk, M.D., Buonomano, D.V.: THE NEURAL BASIS OF TEMPORAL PROCESSING. Annual Review of Neuroscience. 27, 307–340 (2004). https://doi.org/10.1146/annurev.neuro.27.070203.144247.
40.
Butterworth, B., Walsh, V.: Neural basis of mathematical cognition. Current Biology. 21, R618–R621 (2011). https://doi.org/10.1016/j.cub.2011.07.005.
41.
Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Memory. Chapter 9 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. In: Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company; 4th International student edition (2014).
42.
Corkin, S.: TIMELINEWhat’s new with the amnesic patient H.M.? Nature Reviews Neuroscience. 3, 153–160 (2002). https://doi.org/10.1038/nrn726.
43.
Kim, H.: Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 fMRI studies. NeuroImage. 54, 2446–2461 (2011). https://doi.org/10.1016/j.neuroimage.2010.09.045.
44.
Paller, K.A., Wagner, A.D.: Observing the transformation of experience into memory. Trends in Cognitive Sciences. 6, 93–102 (2002). https://doi.org/10.1016/S1364-6613(00)01845-3.
45.
Uncapher, M.R., Wagner, A.D.: Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual-attention theory. Neurobiology of Learning and Memory. 91, 139–154 (2009). https://doi.org/10.1016/j.nlm.2008.10.011.
46.
Cohen, N., Pell, L., Edelson, M.G., Ben-Yakov, A., Pine, A., Dudai, Y.: Peri-encoding predictors of memory encoding and consolidation. Neuroscience & Biobehavioral Reviews. (2014). https://doi.org/10.1016/j.neubiorev.2014.11.002.
47.
Galli, G., Gebert, A.D., Otten, L.J.: Available processing resources influence encoding-related brain activity before an event. Cortex. 49, 2239–2248 (2013). https://doi.org/10.1016/j.cortex.2012.10.011.
48.
Gruber, M.J., Otten, L.J.: Voluntary Control over Prestimulus Activity Related to Encoding. Journal of Neuroscience. 30, 9793–9800 (2010). https://doi.org/10.1523/JNEUROSCI.0915-10.2010.
49.
Park, H., Rugg, M.D.: Prestimulus hippocampal activity predicts later recollection. Hippocampus. NA-NA (2009). https://doi.org/10.1002/hipo.20663.
50.
Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Cognitive Control. Chapter 12 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. In: Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Co.; 4th International student edition (2014).
51.
Gilbert, S.J., Burgess, P.W.: Executive function. Current Biology. 18, R110–R114 (2008). https://doi.org/10.1016/j.cub.2007.12.014.
52.
Bechara, A., Damasio, H., Damasio, A.: Emotion, Decision Making and the Orbitofrontal Cortex. Cerebral Cortex. 10, 295–307 (2000). https://doi.org/10.1093/cercor/10.3.295.
53.
Duncan, J.: An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience. 2, 820–829 (2001).
54.
Miller, E.K., Cohen, J.D.: An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience. 24, 167–202 (2001). https://doi.org/10.1146/annurev.neuro.24.1.167.
55.
Burgess, P., Alderman, N., Volle, E., Benoit, R., Gilbert, S.: Mesulam’s frontal lobe mystery re-examined. Restorative Neurology and Neuroscience. 27, 493–506 (2009). https://doi.org/10.3233/RNN-2009-0511.
56.
Gilbert, S.J., Bird, G., Brindley, R., Frith, C.D., Burgess, P.W.: Atypical recruitment of medial prefrontal cortex in autism spectrum disorders: An fMRI study of two executive function tasks. Neuropsychologia. 46, 2281–2291 (2008). https://doi.org/10.1016/j.neuropsychologia.2008.03.025.
57.
Gilbert, S.J., Spengler, S., Simons, J.S., Steele, J.D., Lawrie, S.M., Frith, C.D., Burgess, P.W.: Functional Specialization within Rostral Prefrontal Cortex (Area 10): A Meta-analysis. Journal of Cognitive Neuroscience. 18, 932–948 (2006). https://doi.org/10.1162/jocn.2006.18.6.932.
58.
Ramnani, N., Owen, A.M.: Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience. 5, 184–194 (2004). https://doi.org/10.1038/nrn1343.
59.
Verhoeven, J.S., Cock, P., Lagae, L., Sunaert, S.: Neuroimaging of autism. Neuroradiology. 52, 3–14 (2010). https://doi.org/10.1007/s00234-009-0583-y.
60.
White, S.J., Frith, U., Rellecke, J., Al-Noor, Z., Gilbert, S.J.: Autistic adolescents show atypical activation of the brain′s mentalizing system even without a prior history of mentalizing problems. Neuropsychologia. 56, 17–25 (2014). https://doi.org/10.1016/j.neuropsychologia.2013.12.013.
61.
White, S.J.: The Triple I Hypothesis: Taking Another(’s) Perspective on Executive Dysfunction in Autism. Journal of Autism and Developmental Disorders. 43, 114–121 (2013). https://doi.org/10.1007/s10803-012-1550-8.
62.
Frith, U., Happé, F.: Autism spectrum disorder. Current Biology. 15, R786–R790 (2005). https://doi.org/10.1016/j.cub.2005.09.033.
63.
Adolphs, R.: Cognitive neuroscience: Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience. 4, 165–178 (2003). https://doi.org/10.1038/nrn1056.
64.
Rugg, M.D., Vilberg, K.L.: Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology. 23, 255–260 (2013). https://doi.org/10.1016/j.conb.2012.11.005.
65.
Duverne, S., Motamedinia, S., Rugg, M.D.: Effects of Age on the Neural Correlates of Retrieval Cue Processing are Modulated by Task Demands. Journal of Cognitive Neuroscience. 21, 1–17 (2009). https://doi.org/10.1162/jocn.2009.21001.
66.
Hutchinson, J.B., Uncapher, M.R., Wagner, A.D.: Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning & Memory. 16, 343–356 (2009). https://doi.org/10.1101/lm.919109.
67.
Squire, L.R., Stark, C.E.L., Clark, R.E.: The Medial Temporal Lobe. Annual Review of Neuroscience. 27, 279–306 (2004). https://doi.org/10.1146/annurev.neuro.27.070203.144130.
68.
Rugg, M.D., Wilding, E.L.: Retrieval processing and episodic memory. Trends in Cognitive Sciences. 4, 108–115 (2000).
69.
Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Social cognition. Chapter 13 of Cognitive Neuroscience: The Biology of the Mind [Paperback]. In: Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company; 4th International student edition (2014).
70.
Decision making. Chapter 24 of Principles of cognitive neuroscience. Sinauer Associates, Sunderland, Mass (2008).
71.
Levy, I., Lazzaro, S.C., Rutledge, R.B., Glimcher, P.W.: Choice from Non-Choice: Predicting Consumer Preferences from Blood Oxygenation Level-Dependent Signals Obtained during Passive Viewing. Journal of Neuroscience. 31, 118–125 (2011). https://doi.org/10.1523/JNEUROSCI.3214-10.2011.
72.
Rangel, A., Camerer, C., Montague, P.R.: A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience. 9, 545–556 (2008). https://doi.org/10.1038/nrn2357.
73.
Lee, V.K., Harris, L.T.: How social cognition can inform social decision making. Frontiers in Neuroscience. 7, (2013). https://doi.org/10.3389/fnins.2013.00259.