Abe, Y., Nakai, I., Takahashi, K., Kawai, N., & Yoshimura, S. (2009). On-site analysis of archaeological artifacts excavated from the site on the outcrop at Northwest Saqqara, Egypt, by using a newly developed portable fluorescence spectrometer and diffractometer. Analytical and Bioanalytical Chemistry, 395(7), 1987–1996. https://doi.org/10.1007/s00216-009-3141-x
Adriaens, A. (2005). Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochimica Acta Part B: Atomic Spectroscopy, 60(12), 1503–1516. https://doi.org/10.1016/j.sab.2005.10.006
Alexander Bentley, R. (2006). Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review. Journal of Archaeological Method and Theory, 13(3), 135–187. https://doi.org/10.1007/s10816-006-9009-x
Archaeological and Anthropological Sciences. (n.d.). 1(3). http://link.springer.com/journal/12520/1/3/page/1
Archaeometry. (n.d.-a). 49(2). http://onlinelibrary.wiley.com.libproxy.ucl.ac.uk/doi/10.1111/arch.2007.49.issue-2/issuetoc;jsessionid=C29BB0DA1059927413EA82D1C17CC253.d03t04
Archaeometry. (n.d.-b). 50(2). http://onlinelibrary.wiley.com.libproxy.ucl.ac.uk/doi/10.1111/arch.2008.50.issue-6/issuetoc
Archaeometry. (n.d.-c). 50(6). http://onlinelibrary.wiley.com.libproxy.ucl.ac.uk/doi/10.1111/arch.2008.50.issue-6/issuetoc
Arthur M. Sackler Colloquia of the National Academy of Sciences & National Academy of Sciences (U.S.). (2005). Scientific examination of art: modern techniques in conservation and analysis : National Academy of Sciences, Washington, D.C., March 19-21, 2003. National Academies Press.
Artioli, G., & Angelini, I. (2010). Scientific methods and cultural heritage: an introduction to the application of materials science to archaeometry and conservation science. Oxford University Press. http://UCL.eblib.com/patron/FullRecord.aspx?p=618614
Baxter, M. J. (1994). Exploratory multivariate analysis in archaeology. Edinburgh University Press. https://www.jstor.org/stable/j.ctv2sx9gfb
Baxter, M. J. (2003). Statistics in archaeology: Vol. Arnold applications of statistics. Arnold.
Baxter, M. J., & Buck, C. E. (2000). Data handling and statistical analysis. In Modern analytical methods in art and archaeology: Vol. Chemical analysis (pp. 681–746). Wiley. https://contentstore.cla.co.uk/secure/link?id=5381c5cf-6c15-e811-80cd-005056af4099
BAXTER, M. J., & FREESTONE, I. C. (2006). LOG-RATIO COMPOSITIONAL DATA ANALYSIS IN ARCHAEOMETRY*. Archaeometry, 48(3), 511–531. https://doi.org/10.1111/j.1475-4754.2006.00270.x
Ben-David, M., & Flaherty, E. A. (2012). Stable isotopes in mammalian research: a beginner’s guide. Journal of Mammalogy, 93(2), 312–328. https://doi.org/10.1644/11-MAMM-S-166.1
Bowman, S. (1991). Science and the past. British Museum Press.
Brothwell, D. R., & Pollard, A. M. (2001a). Handbook of archaeological sciences. John Wiley.
Brothwell, D. R., & Pollard, A. M. (2001b). Handbook of archaeological sciences. John Wiley.
Chaplin, T. D., Clark, R. J. H., & MartinÃ3n-Torres, M. (2010). A combined Raman microscopy, XRF and SEM-EDX study of three valuable objects - A large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London. Journal of Molecular Structure, 976(1–3), 350–359. https://doi.org/10.1016/j.molstruc.2010.03.042
Charalambous, A., Kassianidou, V., & Papasavvas, G. (2014). A compositional study of Cypriot bronzes dating to the Early Iron Age using portable X-ray fluorescence spectrometry (pXRF). Journal of Archaeological Science, 46, 205–216. https://doi.org/10.1016/j.jas.2014.03.006
Charlton, M. F., Blakelock, E., & Martinon-Torres, M. (2012). Investigating the production provenance of iron artifacts with multivariate methods. Journal of Archaeological Science, 39(7), 2280–2293. http://discovery.ucl.ac.uk/1375923/1/1375923.pdf
Chippindale, C. (2006). Colleagues, talking, writing, publishing. In Handbook of archaeological methods (Vol. 2, pp. 1339–1371). Altamira Press. https://contentstore.cla.co.uk/secure/link?id=d9c1e291-e30c-e811-80cd-005056af4099
Ciliberto, E., & Spoto, G. (2000). Modern analytical methods in art and archaeology: Vol. Chemical analysis. Wiley.
Colombo, C., Bracci, S., Conti, C., Greco, M., & Realini, M. (2011). Non-invasive approach in the study of polychrome terracotta sculptures: employment of the portable XRF to investigate complex stratigraphy. X-Ray Spectrometry, 40(4), 273–279. https://doi.org/10.1002/xrs.1336
Contrey, R. M., Goodman-Elgar, M., Bettencourt, N., Seyfarth, A., Van Hoose, A., & Wolff, J. A. (2014). Calibration of a portable X-ray fluorescence spectrometer in the analysis of archaeological samples using influence coefficients. Geochemistry: Exploration, Environment, Analysis, 14(3). http://geea.lyellcollection.org.libproxy.ucl.ac.uk/content/14/3/291.full.pdf
Cotte, M., Dumas, P., Taniguchi, Y., Checroun, E., Walter, P., & Susini, J. (2009). Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy. Comptes Rendus Physique, 10(7), 590–600. https://doi.org/10.1016/j.crhy.2009.03.016
De Atley, S. P., & Bishop, R. L. (1991). Toward an integrated interface for archaeology and archaeometry. In The ceramic legacy of Anna O. Shepard (pp. 358–381). University Press of Colorado. https://contentstore.cla.co.uk/secure/link?id=724ac537-6915-e811-80cd-005056af4099
De Benedetto, G. E., Laviano, R., Sabbatini, L., & Zambonin, P. G. (2002). Infrared spectroscopy in the mineralogical characterization of ancient pottery. Journal of Cultural Heritage, 3(3), 177–186. https://doi.org/10.1016/S1296-2074(02)01178-0
Degryse, P. (2013). Isotope-Ratio Techniques in Glass Studies. In K. Janssens (Ed.), Modern Methods for Analysing Archaeological and Historical Glass (pp. 235–245). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118314234.ch10
Degryse, P., Henderson, J., & Hodgins, G. (2009). Isotopes in vitreous materials: Vol. Studies in archaeological sciences. Leuven University Press. https://www.jstor.org/stable/j.ctt9qdx40
Demortier, G., Adriaens, A., European Cooperation in the Field of Scientific and Technical Research (Organization). COST G1 (Project), & European Commission. Directorate General for Research. (2000). Ion beam study of art and archaeological objects: Vol. EUR. Office for Official Publications of the European Communities.
Derrick, M. R., Stulik, D. C., & Landry, J. M. (1999). Infrared Spectroscopy in Conservation Science - infrared spectroscopy. Getty Conservation Institute. http://www.getty.edu/publications/virtuallibrary/0892364696.html
Dran, J.-C., Salomon, J., Calligaro, T., & Walter, P. (2004). Ion beam analysis of art works: 14 years of use in the Louvre. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 219–220, 7–15. https://doi.org/10.1016/j.nimb.2004.01.019
Drennan, R. D. (2009). Statistics for archaeologists: a commonsense approach: Vol. Interdisciplinary contributions to archaeology (2nd ed). Springer. http://dx.doi.org/10.1007/978-1-4419-0413-3
Dungworth, D., & Girbal, B. (2011). Walmer Castle, Deal, Kent: Analysis of Window Glass. English Heritage Research Department Report Series, 2011(2). http://archaeologydataservice.ac.uk/archives/view/greylit/details.cfm?id=11363
Dussubieux, L., & Walder, H. (2015). Identifying American native and European smelted coppers with pXRF: a case study of artifacts from the Upper Great Lakes region. Journal of Archaeological Science, 59, 169–178. https://doi.org/10.1016/j.jas.2015.04.011
Edwards, H. G. M., Chalmers, J. M., & Royal Society of Chemistry (Great Britain). (2005). Raman spectroscopy in archaeology and art history: Vol. RSC analytical spectroscopy monographs. Royal Society of Chemistry.
Eiland, M. L., & Williams, Q. (2001). Investigation of Islamic ceramics from Tell Tuneinir using X-ray diffraction. Geoarchaeology, 16(8), 875–903. https://doi.org/10.1002/gea.1025
Eliyahu-Behar, A., Shilstein, S., Raban-Gerstel, N., Goren, Y., Gilboa, A., Sharon, I., & Weiner, S. (2008). An integrated approach to reconstructing primary activities from pit deposits: iron smithing and other activities at Tel Dor under Neo-Assyrian domination. Journal of Archaeological Science, 35(11), 2895–2908. https://doi.org/10.1016/j.jas.2008.06.004
Fletcher, M., & Lock, G. R. (1991). Digging numbers: elementary statistics for archaeologists: Vol. Monograph / Oxford University Committee for Archaeology. Oxford University Committee for Archaeology.
Forster, N., Grave, P., Vickery, N., & Kealhofer, L. (2011). Non-destructive analysis using PXRF: methodology and application to archaeological ceramics. X-Ray Spectrometry, 40(5), 389–398. https://doi.org/10.1002/xrs.1360
Frahm, E. (2013a). Is obsidian sourcing about geochemistry or archaeology? A reply to Speakman and Shackley. Journal of Archaeological Science, 40(2), 1444–1448. https://doi.org/10.1016/j.jas.2012.10.001
Frahm, E. (2013b). Silo science and portable XRF in archaeology: a response to Speakman and Shackley. Journal of Archaeological Science, 40(2), 1435–1443. https://doi.org/10.1016/j.jas.2012.09.033
Frahm, E. (2013c). Validity of ‘off-the-shelf’ handheld portable XRF for sourcing Near Eastern obsidian chip debris. Journal of Archaeological Science, 40(2), 1080–1092. https://doi.org/10.1016/j.jas.2012.06.038
Frahm, E., & Doonan, R. C. P. (2013). The technological versus methodological revolution of portable XRF in archaeology. Journal of Archaeological Science, 40(2), 1425–1434. https://doi.org/10.1016/j.jas.2012.10.013
Freestone, I. C., Leslie, K. A., Thirlwall, M., & Gorin-Rosen, Y. (2003). Strontium Isotopes in the Investigation of Early Glass Production: Byzantine and Early Islamic Glass from the Near East*. Archaeometry, 45(1), 19–32. https://doi.org/10.1111/1475-4754.00094
Freestone, I. C., & Middleton, A. P. (1987). Mineralogical applications of the analytical SEM in archaeology. Mineralogical Magazine, 51, 21–31. http://www.minersoc.org/pages/Archive-MM/Volume_51/51-359-21.pdf
Gauss, R. K., Bátora, J., Nowaczinski, E., Rassmann, K., & Schukraft, G. (2013). The Early Bronze Age settlement of Fidvár, Vráble (Slovakia): reconstructing prehistoric settlement patterns using portable XRF. Journal of Archaeological Science, 40(7), 2942–2960. https://doi.org/10.1016/j.jas.2013.01.029
Giumlia-Mair, A., Albertson, C., Boschian, G., Giachi, G., Iacomussi, P., Pallecchi, P., Rossi, G., Shugar, A. N., & Stock, S. (2010). Surface characterisation techniques in the study and conservation of art and archaeological artefacts: a review. Materials Technology, 25(5), 245–261. https://doi.org/10.1179/175355510X12850784228001
Goffer, Z. (2007). Archaeological chemistry (2nd ed). Wiley.
Goren, Y., Mommsen, H., & Klinger, J. (2011). Non-destructive provenance study of cuneiform tablets using portable X-ray fluorescence (pXRF). Journal of Archaeological Science, 38(3), 684–696. https://doi.org/10.1016/j.jas.2010.10.020
Grave, P., Attenbrow, V., Sutherland, L., Pogson, R., & Forster, N. (2012). Non-destructive pXRF of mafic stone tools. Journal of Archaeological Science, 39(6), 1674–1686. https://doi.org/10.1016/j.jas.2011.11.011
Hamilton, E. (2004). The four scales of technical analysis; or ’how to make archaeometry more useful. In Exploring the role of analytical scale in archaeological interpretation: Vol. BAR international series (pp. 45–48). Archaeopress. https://contentstore.cla.co.uk/secure/link?id=1dfefd87-db0c-e811-80cd-005056af4099
Hancock, R. G. V. (2000). Elemental analysis. In Modern analytical methods in art and archaeology: Vol. Chemical analysis (pp. 11–20). Wiley.
HAUSTEIN, M., GILLIS, C., & PERNICKA, E. (2010). TIN ISOTOPY-A NEW METHOD FOR SOLVING OLD QUESTIONS. Archaeometry, 52(5), 816–832. https://doi.org/10.1111/j.1475-4754.2010.00515.x
Heginbotham, A., Bezur, A., Bouchard, M., Davis, J. M., Eremin, K., Frantz, J. H., Glinsman, L., Hayek, L. A., Hook, D., Kantarelou, V., McGath, A., Shugar, A., Sirois, J., S, D., Smith, R., & Speakman, R. J. (2010). An Evaluation of inter-laboratory reproducibility for quantitative XRF of historic copper Alloys. In P. Mardikian, C. Chemello, C. Watters, & P. Hull (Eds.), In Metal 2010. Proceedings of the International Conference on Metal Conservation, Charleston, South Carolina, USA, October 11-15, 2010 (pp. 178–188). Clemson University. http://www.getty.edu/museum/pdfs/heginbotham_metal2010_submitted2.pdf
Hein, A., Tsolakidou, A., Iliopoulos, I., Mommsen, H., Buxeda i GarrigÃ3s, J., Montana, G., & Kilikoglou, V. (2002). Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. The Analyst, 127(4), 542–553. https://doi.org/10.1039/b109603f
Henderson, J. (1989). Scientific analysis in archaeology and its interpretation: Vol. UCLA Institute of Archaeology, archaeological research tools. Oxford University Committee for Archaeology, Institute of Archaeology.
Henderson, J. (2000). The science and archaeology of materials: an investigation of inorganic materials. Routledge. https://ebookcentral.proquest.com/lib/UCL/detail.action?docID=1144554&pq-origsite=primo
Hunt, A. M. W., & Speakman, R. J. (2015). Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science, 53, 626–638. https://doi.org/10.1016/j.jas.2014.11.031
Ingo, G. M., Balbi, S., de Caro, T., Fragalà, I., Angelini, E., & Bultrini, G. (2006). Combined use of SEM-EDS, OM and XRD for the characterization of corrosion products grown on silver roman coins. Applied Physics A, 83(4), 493–497. https://doi.org/10.1007/s00339-006-3533-0
Janssens, K. H. A. (2011). Modern methods for analysing archaeological and historical glass. John Wiley & Sons Inc. http://dx.doi.org/10.1002/9781118314234
Janssens, K. H. A., & Grieken, R. van. (2004). Non-destructive microanalysis of cultural heritage materials: Vol. Comprehensive analytical chemistry. Elsevier.
Jones, A. (2001). Archaeological theory and scientific practice: Vol. Topics in contemporary archaeology. Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9780511606069
Jones, A. (2004). Archaeometry and materiality: materials-based analysis in theory and practice*. Archaeometry, 46(3), 327–338. https://doi.org/10.1111/j.1475-4754.2004.00161.x
Kearns, T., Martinón-Torres, M., & Rehren, T. (2010). Metal to mould: alloy identification in experimental casting moulds using XRF. Historical Metallurgy: Journal of the Historical Metallurgy Society, 44(1), 48–58.
Killick, D. (1997). Archaeology and archaeometry: From casual dating to a meaningful relationship? Antiquity, 71(273), 518–524. http://search.proquest.com/docview/217552149?accountid=14511
Killick, D. (2015). The awkward adolescence of archaeological science. Journal of Archaeological Science, 56, 242–247. https://doi.org/10.1016/j.jas.2015.01.010
Kovacs, R., Schlosser, S., Staub, S. P., Schmiderer, A., Pernicka, E., & Günther, D. (2009). Characterization of calibration materials for trace element analysis and fingerprint studies of gold using LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 24(4). https://doi.org/10.1039/b819685k
Lambert, J. B. (1997). Traces of the past: unraveling the secrets of archaeology through chemistry: Vol. Helix books. Addison-Wesley.
LEE-THORP, J. A. (2008). ON ISOTOPES AND OLD BONES*. Archaeometry, 50(6), 925–950. https://doi.org/10.1111/j.1475-4754.2008.00441.x
Liu, S., Li, Q. H., Gan, F., Zhang, P., & Lankton, J. W. (2012). Silk Road glass in Xinjiang, China: chemical compositional analysis and interpretation using a high-resolution portable XRF spectrometer. Journal of Archaeological Science, 39(7), 2128–2142. https://doi.org/10.1016/j.jas.2012.02.035
Martini, M., Milazzo, M., Piacentini, M., Società italiana di fisica, & International School of Physics ‘Enrico Fermi’. (2004). Physics methods in archaeometry: Vol. Proceedings of the International School of Physics ‘Enrico Fermi’. IOS Press.
Martinón-Torres, M. (2008). Why should archaeologists take history and science seriously? In Archaeology, history and science: integrating approaches to ancient materials: Vol. Publications of the Institute of Archaeology, University College London (pp. 15–36). Left Coast Press. http://ls-tlss.ucl.ac.uk/course-materials/ARCLG107_45457.pdf
Martinón-Torres, M., & Killic, D. C. (2015). Archaeological Theories and Archaeological Sciences. In A. Gardner, M. Lake, & U. Sommer (Eds.), The Oxford Handbook of Archaeological Theory. http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199567942.001.0001/oxfordhb-9780199567942-e-004?rskey=F3hTAd&result=1
Martinón-Torres, M., Li, X. J., Bevan, A., Xia, Y., Zhao, K., & Rehren, T. (2014). Forty Thousand Arms for a Single Emperor: From Chemical Data to the Labor Organization Behind the Bronze Arrows of the Terracotta Army. Journal of Archaeological Method and Theory, 21(3), 534–562. https://doi.org/10.1007/s10816-012-9158-z
Martinón-Torres, M., & Rehren, T. (2008). Archaeology, history and science: integrating approaches to ancient materials: Vol. Publications of the Institute of Archaeology, University College London. Left Coast Press.
Martinón-Torres, M., & Uribe-Villegas, M. A. (2015a). The prehistoric individual, connoisseurship and archaeological science: The Muisca goldwork of Colombia. Journal of Archaeological Science, 63, 136–155. https://doi.org/10.1016/j.jas.2015.08.014
Martinón-Torres, M., & Uribe-Villegas, M. A. (2015b). The prehistoric individual, connoisseurship and archaeological science: The Muisca goldwork of Colombia. Journal of Archaeological Science, 63, 136–155. https://doi.org/10.1016/j.jas.2015.08.014
Martinón-Torres, M., Valcárcel Rojas, R., Sáenz Samper, J., & Guerra, M. F. (2012). Metallic encounters in Cuba: The technology, exchange and meaning of metals before and after Columbus. Journal of Anthropological Archaeology, 31(4), 439–454. https://doi.org/10.1016/j.jaa.2012.03.006
Milić, M. (2014). PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe. Journal of Archaeological Science, 41, 285–296. https://doi.org/10.1016/j.jas.2013.08.002
Moreau, J.-F. (2009). Proceedings: ISA 2006 : 36th International Symposium on Archaeometry : 2-6 May 2006, Quebec City, Canada: Vol. Cahiers d’archéologie du CELAT. Série archéométrie. CELAT, Université Laval.
Nazaroff, A. J., Prufer, K. M., & Drake, B. L. (2010). Assessing the applicability of portable X-ray fluorescence spectrometry for obsidian provenance research in the Maya lowlands. Journal of Archaeological Science, 37(4), 885–895. https://doi.org/10.1016/j.jas.2009.11.019
Nesse, W. D. (2004). Introduction to optical mineralogy (3rd ed). Oxford University Press.
Nicholas, M., & Manti, P. (15 C.E.). Testing the applicability of handheld portable XRF to the characterisation of archaeological copper alloys. In J. Bridgland (Ed.), ICOM-CC 17th Triennial Conference Preprints, Melbourne. Paris: International Council of Museums. http://orca.cf.ac.uk/65469/
Ogburn, D., Sillar, B., & Sierra, J. C. (2013). Evaluating effects of chemical weathering and surface contamination on the in situ provenance analysis of building stones in the Cuzco region of Peru with portable XRF. Journal of Archaeological Science, 40(4), 1823–1837. https://doi.org/10.1016/j.jas.2012.09.023
Olsen, S. L. (1988). Scanning electron microscopy in archaeology: Vol. BAR international series. B.A.R. https://doi.org/https://doi.org/10.30861/9780860545798
Orfanou, V., & Rehren, Th. (2015). A (not so) dangerous method: pXRF vs. EPMA-WDS analyses of copper-based artefacts. Archaeological and Anthropological Sciences, 7(3), 387–397. https://doi.org/10.1007/s12520-014-0198-z
Orton, C. (2000). Sampling in archaeology: Vol. Cambridge manuals in archaeology. Cambridge University Press. https://doi.org/10.1017/CBO9781139163996
Orton, Clive. (1980). Mathematics in archaeology: Vol. Collins archaeology. Collins.
Parkes, P. A. (1986). Current scientific techniques in archaeology. Croom Helm.
Pérez-Arantegui, J. (Ed.). (2006). Proceedings of the 34th International Symposium on Archaeometry. http://ifc.dpz.es/publicaciones/ebooks/id/2610
Pollard, A. M., Batt, C., Young, S., & Stern, B. (2007). Analytical chemistry in archaeology. Cambridge University Press.
Pollard, A. M., Heron, C., Royal Society of Chemistry (Great Britain), & Armitage, R. A. (2017). Archaeological chemistry. Royal Society of Chemistry.
Potts, P. J., Williams-Thorpe, O., & Webb, P. C. (1997). The Bulk Analysis of Silicate Rocks by Portable X-Ray Fluorescence: Effect of Sample Mineralogy in Relation to the Size of the Excited Volume. Geostandards and Geoanalytical Research, 21(1), 29–41. https://doi.org/10.1111/j.1751-908X.1997.tb00529.x
Rehren, T. (2001). Qantir-Piramesses and the organisation of the Egyptian glass industry. In The social context of technological change: Egypt and the Near East, 1650-1550 B.C. : proceedings of a conference held at St Edmund Hall, Oxford, 12-14 September 2000 (pp. 223–138). Oxbow. https://contentstore.cla.co.uk/secure/link?id=eadf6446-d60c-e811-80cd-005056af4099
Ricciardi, P., Colomban, P., Tournié, A., Macchiarola, M., & Ayed, N. (2009). A non-invasive study of Roman Age mosaic glass tesserae by means of Raman spectroscopy. Journal of Archaeological Science, 36(11), 2551–2559. https://doi.org/10.1016/j.jas.2009.07.008
Sand-Jensen, K. (2007). How to write consistently boring scientific literature. Oikos, 116(5), 723–727. https://doi.org/10.1111/j.0030-1299.2007.15674.x
Sax, M., Walsh, J. M., Freestone, I. C., Rankin, A. H., & Meeks, N. D. (2008). The origins of two purportedly pre-Columbian Mexican crystal skulls. Journal of Archaeological Science, 35(10), 2751–2760. https://doi.org/10.1016/j.jas.2008.05.007
Scott, R. B., Eekelers, K., & Degryse, P. (2016). Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-ray Fluorescence Spectrometry. Applied Spectroscopy, 70(1), 94–109. https://doi.org/10.1177/0003702815616741
Scott, R. B., Eekelers, K., Fredericks, L., & Degryse, P. (2015). A methodology for qualitative archaeometallurgical fieldwork using a handheld X-ray fluorescence spectrometer. STAR: Science & Technology of Archaeological Research, 1(2), 70–80. https://doi.org/10.1080/20548923.2016.1183941
Shackley, M. (2010). Is there reliability and validity in portable X-ray fluorescence spectrometry (XRF)? SAA Archaeological Record, 17–20.
Shackley, M. (2011a). An introduction to X-Ray Fluorescence (XRF) analysis in archaeology. In X-ray fluorescence spectrometry (XRF) in geoarchaeology (pp. 7–44). Springer. https://doi.org/10.1007/978-1-4419-6886-9_2
Shackley, M. (2011b). An introduction to X-Ray Fluorescence (XRF) analysis in archaeology. In X-ray fluorescence spectrometry (XRF) in geoarchaeology (pp. 7–44). Springer. https://doi.org/10.1007/978-1-4419-6886-9_2
Shackley, M. S. (2011). An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In M. S. Shackley (Ed.), X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology (pp. 7–44). Springer New York. https://doi.org/10.1007/978-1-4419-6886-9_2
Shackley, M. S. (2012). Portable X-ray Fluorescence Spectrometry (pXRF): The Good, the Bad, and the Ugly. Archaeology Southwest Magazine, 26(2). http://www.archaeologysouthwest.org/pdf/pXRF_essay_shackley.pdf
Shennan, S. (1997). Quantifying archaeology (2nd ed). University of Iowa Press. https://www.jstor.org/stable/10.3366/j.ctvxcrtz3
Shugar, A. N. (2013). Portable X-ray Fluorescence and Archaeology: Limitations of the Instrument and Suggested Methods To Achieve Desired Results. In R. A. Armitage & J. H. Burton (Eds.), Archaeological chemistry VIII: Vol. ACS symposium series (pp. 173–189). American Chemical Society.
Shugar, A. N., & Mass, J. L. (2012). Handheld XRF for art and archaeology: Vol. Studies in archaeological sciences. Leuven University Press. https://www.jstor.org/stable/j.ctt9qdzfs
Sillar, B., & Tite, M. S. (2000). The challenge of ‘Technological choices’ for materials science approaches in archaeology. Archaeometry, 42(1), 2–20. https://doi.org/10.1111/j.1475-4754.2000.tb00863.x
Speakman, R. J., Little, N. C., Creel, D., Miller, M. R., & Inanez, J. G. (2011). Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. Journal of Archaeological Science, 38(12), 3483–3496. https://doi.org/10.1016/j.jas.2011.08.011
Tite, M. S. (2001). Overview - materials study in archaeology. In Handbook of archaeological sciences (pp. 443–448). John Wiley. https://contentstore.cla.co.uk/secure/link?id=db56c214-7a15-e811-80cd-005056af4099
Tite, M. S. (2002). Archaeological Collections: Invasive Sampling versus Object Integrity. Papers from the Institute of Archaeology, 13. https://doi.org/10.5334/pia.189
Torrence, R., Rehren, T., & Martinon-Torres, M. (2015). Scoping the Future of Archaeological Science: Papers in Honour of Richard Klein. Journal of Archaeological Science, 56. http://www.sciencedirect.com/science/journal/03054403/56
Tubb, K. W. (2007). Irreconcilable Differences? Problems with Unprovenanced Antiquities. Papers from the Institute of Archaeology, 18. https://doi.org/10.5334/pia.294
Tykot, R. H. (2016). Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations. Applied Spectroscopy, 70(1), 42–56. https://doi.org/10.1177/0003702815616745
Uda, M., Demortier, G., Nakai, I., & International Symposium on X-ray Archaeometry. (2005). X-rays for archaeology. Springer. https://link.springer.com/book/10.1007/1-4020-3581-0
White, P. (2006). Producing the record. In Archaeology in practice: a student guide to archaeological analyses (pp. 410–425). Blackwell. https://contentstore.cla.co.uk/secure/link?id=0e7f700a-df0c-e811-80cd-005056af4099
Young, M. L., Casadio, F., Schnepp, S., Pearlstein, E., Almer, J. D., & Haeffner, D. R. (2010). Non-invasive characterization of manufacturing techniques and corrosion of ancient Chinese bronzes and a later replica using synchrotron X-ray diffraction. Applied Physics A, 100(3), 635–646. https://doi.org/10.1007/s00339-010-5646-8