4.
Artioli, G., Angelini, I.: Scientific methods and cultural heritage: an introduction to the application of materials science to archaeometry and conservation science. Oxford University Press, Oxford (2010).
5.
Bowman, S.: Science and the past. British Museum Press, London (1991).
6.
Brothwell, D.R., Pollard, A.M.: Handbook of archaeological sciences. John Wiley, Chichester (2001).
7.
Demortier, G., Adriaens, A., European Cooperation in the Field of Scientific and Technical Research (Organization). COST G1 (Project), European Commission. Directorate General for Research: Ion beam study of art and archaeological objects. Office for Official Publications of the European Communities, Luxembourg (2000).
8.
Dran, J.-C., Salomon, J., Calligaro, T., Walter, P.: Ion beam analysis of art works: 14 years of use in the Louvre. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 219–220, 7–15 (2004). https://doi.org/10.1016/j.nimb.2004.01.019.
9.
Ciliberto, E., Spoto, G.: Modern analytical methods in art and archaeology. Wiley, New York (2000).
10.
Edwards, H.G.M., Chalmers, J.M., Royal Society of Chemistry (Great Britain): Raman spectroscopy in archaeology and art history. Royal Society of Chemistry, Cambridge (2005).
11.
Giumlia-Mair, A., Albertson, C., Boschian, G., Giachi, G., Iacomussi, P., Pallecchi, P., Rossi, G., Shugar, A.N., Stock, S.: Surface characterisation techniques in the study and conservation of art and archaeological artefacts: a review. Materials Technology. 25, 245–261 (2010). https://doi.org/10.1179/175355510X12850784228001.
12.
Goffer, Z.: Archaeological chemistry. Wiley, Hoboken, N.J. (2007).
13.
Henderson, J.: Scientific analysis in archaeology and its interpretation. Oxford University Committee for Archaeology, Institute of Archaeology, Oxford (1989).
14.
Henderson, J.: The science and archaeology of materials: an investigation of inorganic materials. Routledge, London (2000).
15.
Janssens, K.H.A., Grieken, R. van: Non-destructive microanalysis of cultural heritage materials. Elsevier, Amsterdam, London (2004).
16.
Lambert, J.B.: Traces of the past: unraveling the secrets of archaeology through chemistry. Addison-Wesley, Reading, Mass (1997).
17.
Martini, M., Milazzo, M., Piacentini, M., Società italiana di fisica, International School of Physics ‘Enrico Fermi’: Physics methods in archaeometry. IOS Press, Amsterdam (2004).
18.
Martinón-Torres, M., Rehren, T.: Archaeology, history and science: integrating approaches to ancient materials. Left Coast Press, Walnut Creek, CA (2008).
19.
Moreau, J.-F.: Proceedings: ISA 2006 : 36th International Symposium on Archaeometry : 2-6 May 2006, Quebec City, Canada. CELAT, Université Laval, Québec (2009).
20.
Arthur M. Sackler Colloquia of the National Academy of Sciences, National Academy of Sciences (U.S.): Scientific examination of art: modern techniques in conservation and analysis : National Academy of Sciences, Washington, D.C., March 19-21, 2003. National Academies Press, Washington, D.C. (2005).
21.
Nesse, W.D.: Introduction to optical mineralogy. Oxford University Press, New York (2004).
22.
Olsen, S.L.: Scanning electron microscopy in archaeology. B.A.R., Oxford (1988). https://doi.org/https://doi.org/10.30861/9780860545798.
23.
Parkes, P.A.: Current scientific techniques in archaeology. Croom Helm, London (1986).
24.
Pérez-Arantegui, J. ed: Proceedings of the 34th International Symposium on Archaeometry, http://ifc.dpz.es/publicaciones/ebooks/id/2610.
25.
Pollard, A.M., Heron, C., Royal Society of Chemistry (Great Britain), Armitage, R.A.: Archaeological chemistry. Royal Society of Chemistry, Cambridge (2017).
26.
Pollard, A.M., Batt, C., Young, S., Stern, B.: Analytical chemistry in archaeology. Cambridge University Press, Cambridge (2007).
27.
Shackley, M.S.: An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In: Shackley, M.S. (ed.) X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. pp. 7–44. Springer New York, New York, NY (2011). https://doi.org/10.1007/978-1-4419-6886-9_2.
28.
Torrence, R., Rehren, T., Martinon-Torres, M.: Scoping the Future of Archaeological Science: Papers in Honour of Richard Klein. Journal of Archaeological Science. 56, (2015).
29.
Uda, M., Demortier, G., Nakai, I., International Symposium on X-ray Archaeometry: X-rays for archaeology. Springer, Dordrecht (2005).
30.
Adriaens, A.: Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochimica Acta Part B: Atomic Spectroscopy. 60, 1503–1516 (2005). https://doi.org/10.1016/j.sab.2005.10.006.
31.
De Atley, S.P., Bishop, R.L.: Toward an integrated interface for archaeology and archaeometry. In: The ceramic legacy of Anna O. Shepard. pp. 358–381. University Press of Colorado, Niwot, Colo (1991).
32.
Hamilton, E.: The four scales of technical analysis; or ’how to make archaeometry more useful. In: Exploring the role of analytical scale in archaeological interpretation. pp. 45–48. Archaeopress, Oxford (2004).
33.
Killick, D.: Archaeology and archaeometry: From casual dating to a meaningful relationship? Antiquity. 71, 518–524 (1997).
34.
Killick, D.: The awkward adolescence of archaeological science. Journal of Archaeological Science. 56, 242–247 (2015). https://doi.org/10.1016/j.jas.2015.01.010.
35.
Jones, A.: Archaeological theory and scientific practice. Cambridge University Press, Cambridge (2001). https://doi.org/https://doi.org/10.1017/CBO9780511606069.
36.
Jones, A.: Archaeometry and materiality: materials-based analysis in theory and practice*. Archaeometry. 46, 327–338 (2004). https://doi.org/10.1111/j.1475-4754.2004.00161.x.
37.
Martinón-Torres, M.: Why should archaeologists take history and science seriously? In: Archaeology, history and science: integrating approaches to ancient materials. pp. 15–36. Left Coast Press, Walnut Creek, CA (2008).
38.
Martinón-Torres, M., Killic, D.C.: Archaeological Theories and Archaeological Sciences. In: Gardner, A., Lake, M., and Sommer, U. (eds.) The Oxford Handbook of Archaeological Theory (2015).
39.
Rehren, T.: Qantir-Piramesses and the organisation of the Egyptian glass industry. In: The social context of technological change: Egypt and the Near East, 1650-1550 B.C. : proceedings of a conference held at St Edmund Hall, Oxford, 12-14 September 2000. pp. 223–138. Oxbow, Oxford (2001).
40.
Sillar, B., Tite, M.S.: The challenge of ‘Technological choices’ for materials science approaches in archaeology. Archaeometry. 42, 2–20 (2000). https://doi.org/10.1111/j.1475-4754.2000.tb00863.x.
41.
Tite, M.S.: Overview - materials study in archaeology. In: Handbook of archaeological sciences. pp. 443–448. John Wiley, Chichester (2001).
42.
Orton, C.: Sampling in archaeology. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9781139163996.
43.
Tite, M.S.: Archaeological Collections: Invasive Sampling versus Object Integrity. Papers from the Institute of Archaeology. 13, (2002). https://doi.org/10.5334/pia.189.
44.
Tubb, K.W.: Irreconcilable Differences? Problems with Unprovenanced Antiquities. Papers from the Institute of Archaeology. 18, (2007). https://doi.org/10.5334/pia.294.
45.
Hancock, R.G.V.: Elemental analysis. In: Modern analytical methods in art and archaeology. pp. 11–20. Wiley, New York (2000).
46.
Shackley, M.: An introduction to X-Ray Fluorescence (XRF) analysis in archaeology. In: X-ray fluorescence spectrometry (XRF) in geoarchaeology. pp. 7–44. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-6886-9_2.
47.
Shackley, M.: An introduction to X-Ray Fluorescence (XRF) analysis in archaeology. In: X-ray fluorescence spectrometry (XRF) in geoarchaeology. pp. 7–44. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-6886-9_2.
48.
Contrey, R.M., Goodman-Elgar, M., Bettencourt, N., Seyfarth, A., Van Hoose, A., Wolff, J.A.: Calibration of a portable X-ray fluorescence spectrometer in the analysis of archaeological samples using influence coefficients. Geochemistry: Exploration, Environment, Analysis. 14, (2014).
49.
Frahm, E., Doonan, R.C.P.: The technological versus methodological revolution of portable XRF in archaeology. Journal of Archaeological Science. 40, 1425–1434 (2013). https://doi.org/10.1016/j.jas.2012.10.013.
50.
Shackley, M.: Is there reliability and validity in portable X-ray fluorescence spectrometry (XRF)? SAA archaeological record. 17–20 (2010).
51.
Shackley, M.S.: Portable X-ray Fluorescence Spectrometry (pXRF): The Good, the Bad, and the Ugly. Archaeology Southwest Magazine. 26, (2012).
52.
Shugar, A.N., Mass, J.L.: Handheld XRF for art and archaeology. Leuven University Press, Leuven (2012).
53.
Shugar, A.N.: Portable X-ray Fluorescence and Archaeology: Limitations of the Instrument and Suggested Methods To Achieve Desired Results. In: Armitage, R.A. and Burton, J.H. (eds.) Archaeological chemistry VIII. pp. 173–189. American Chemical Society, Washington, DC (2013).
54.
Tykot, R.H.: Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations. Applied Spectroscopy. 70, 42–56 (2016). https://doi.org/10.1177/0003702815616745.
55.
Charalambous, A., Kassianidou, V., Papasavvas, G.: A compositional study of Cypriot bronzes dating to the Early Iron Age using portable X-ray fluorescence spectrometry (pXRF). Journal of Archaeological Science. 46, 205–216 (2014). https://doi.org/10.1016/j.jas.2014.03.006.
56.
Dussubieux, L., Walder, H.: Identifying American native and European smelted coppers with pXRF: a case study of artifacts from the Upper Great Lakes region. Journal of Archaeological Science. 59, 169–178 (2015). https://doi.org/10.1016/j.jas.2015.04.011.
57.
Kearns, T., Martinón-Torres, M., Rehren, T.: Metal to mould: alloy identification in experimental casting moulds using XRF. Historical metallurgy: journal of the Historical Metallurgy Society. 44, 48–58 (2010).
58.
Martinón-Torres, M., Li, X.J., Bevan, A., Xia, Y., Zhao, K., Rehren, T.: Forty Thousand Arms for a Single Emperor: From Chemical Data to the Labor Organization Behind the Bronze Arrows of the Terracotta Army. Journal of Archaeological Method and Theory. 21, 534–562 (2014). https://doi.org/10.1007/s10816-012-9158-z.
59.
Martinón-Torres, M., Valcárcel Rojas, R., Sáenz Samper, J., Guerra, M.F.: Metallic encounters in Cuba: The technology, exchange and meaning of metals before and after Columbus. Journal of Anthropological Archaeology. 31, 439–454 (2012). https://doi.org/10.1016/j.jaa.2012.03.006.
60.
Martinón-Torres, M., Uribe-Villegas, M.A.: The prehistoric individual, connoisseurship and archaeological science: The Muisca goldwork of Colombia. Journal of Archaeological Science. 63, 136–155 (2015). https://doi.org/10.1016/j.jas.2015.08.014.
61.
Nicholas, M., Manti, P.: Testing the applicability of handheld portable XRF to the characterisation of archaeological copper alloys. In: Bridgland, J. (ed.) ICOM-CC 17th Triennial Conference Preprints, Melbourne. Paris: International Council of Museums (15)AD.
62.
Orfanou, V., Rehren, Th.: A (not so) dangerous method: pXRF vs. EPMA-WDS analyses of copper-based artefacts. Archaeological and Anthropological Sciences. 7, 387–397 (2015). https://doi.org/10.1007/s12520-014-0198-z.
63.
Scott, R.B., Eekelers, K., Degryse, P.: Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-ray Fluorescence Spectrometry. Applied Spectroscopy. 70, 94–109 (2016). https://doi.org/10.1177/0003702815616741.
64.
Scott, R.B., Eekelers, K., Fredericks, L., Degryse, P.: A methodology for qualitative archaeometallurgical fieldwork using a handheld X-ray fluorescence spectrometer. STAR: Science & Technology of Archaeological Research. 1, 70–80 (2015). https://doi.org/10.1080/20548923.2016.1183941.
65.
Forster, N., Grave, P., Vickery, N., Kealhofer, L.: Non-destructive analysis using PXRF: methodology and application to archaeological ceramics. X-Ray Spectrometry. 40, 389–398 (2011). https://doi.org/10.1002/xrs.1360.
66.
Goren, Y., Mommsen, H., Klinger, J.: Non-destructive provenance study of cuneiform tablets using portable X-ray fluorescence (pXRF). Journal of Archaeological Science. 38, 684–696 (2011). https://doi.org/10.1016/j.jas.2010.10.020.
67.
Hunt, A.M.W., Speakman, R.J.: Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science. 53, 626–638 (2015). https://doi.org/10.1016/j.jas.2014.11.031.
68.
Speakman, R.J., Little, N.C., Creel, D., Miller, M.R., Inanez, J.G.: Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. Journal of Archaeological Science. 38, 3483–3496 (2011). https://doi.org/10.1016/j.jas.2011.08.011.
69.
Dungworth, D., Girbal, B.: Walmer Castle, Deal, Kent: Analysis of Window Glass. English Heritage Research Department Report Series. 2011, (2011).
70.
Liu, S., Li, Q.H., Gan, F., Zhang, P., Lankton, J.W.: Silk Road glass in Xinjiang, China: chemical compositional analysis and interpretation using a high-resolution portable XRF spectrometer. Journal of Archaeological Science. 39, 2128–2142 (2012). https://doi.org/10.1016/j.jas.2012.02.035.
71.
Nazaroff, A.J., Prufer, K.M., Drake, B.L.: Assessing the applicability of portable X-ray fluorescence spectrometry for obsidian provenance research in the Maya lowlands. Journal of Archaeological Science. 37, 885–895 (2010). https://doi.org/10.1016/j.jas.2009.11.019.
72.
Frahm, E.: Validity of ‘off-the-shelf’ handheld portable XRF for sourcing Near Eastern obsidian chip debris. Journal of Archaeological Science. 40, 1080–1092 (2013). https://doi.org/10.1016/j.jas.2012.06.038.
73.
Frahm, E.: Silo science and portable XRF in archaeology: a response to Speakman and Shackley. Journal of Archaeological Science. 40, 1435–1443 (2013). https://doi.org/10.1016/j.jas.2012.09.033.
74.
Frahm, E.: Is obsidian sourcing about geochemistry or archaeology? A reply to Speakman and Shackley. Journal of Archaeological Science. 40, 1444–1448 (2013). https://doi.org/10.1016/j.jas.2012.10.001.
75.
Milić, M.: PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe. Journal of Archaeological Science. 41, 285–296 (2014). https://doi.org/10.1016/j.jas.2013.08.002.
76.
Grave, P., Attenbrow, V., Sutherland, L., Pogson, R., Forster, N.: Non-destructive pXRF of mafic stone tools. Journal of Archaeological Science. 39, 1674–1686 (2012). https://doi.org/10.1016/j.jas.2011.11.011.
77.
Ogburn, D., Sillar, B., Sierra, J.C.: Evaluating effects of chemical weathering and surface contamination on the in situ provenance analysis of building stones in the Cuzco region of Peru with portable XRF. Journal of Archaeological Science. 40, 1823–1837 (2013). https://doi.org/10.1016/j.jas.2012.09.023.
78.
Potts, P.J., Williams-Thorpe, O., Webb, P.C.: The Bulk Analysis of Silicate Rocks by Portable X-Ray Fluorescence: Effect of Sample Mineralogy in Relation to the Size of the Excited Volume. Geostandards and Geoanalytical Research. 21, 29–41 (1997). https://doi.org/10.1111/j.1751-908X.1997.tb00529.x.
79.
Colombo, C., Bracci, S., Conti, C., Greco, M., Realini, M.: Non-invasive approach in the study of polychrome terracotta sculptures: employment of the portable XRF to investigate complex stratigraphy. X-Ray Spectrometry. 40, 273–279 (2011). https://doi.org/10.1002/xrs.1336.
80.
Chaplin, T.D., Clark, R.J.H., MartinÃ3n-Torres, M.: A combined Raman microscopy, XRF and SEM-EDX study of three valuable objects - A large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London. Journal of Molecular Structure. 976, 350–359 (2010). https://doi.org/10.1016/j.molstruc.2010.03.042.
81.
Eliyahu-Behar, A., Shilstein, S., Raban-Gerstel, N., Goren, Y., Gilboa, A., Sharon, I., Weiner, S.: An integrated approach to reconstructing primary activities from pit deposits: iron smithing and other activities at Tel Dor under Neo-Assyrian domination. Journal of Archaeological Science. 35, 2895–2908 (2008). https://doi.org/10.1016/j.jas.2008.06.004.
82.
Gauss, R.K., Bátora, J., Nowaczinski, E., Rassmann, K., Schukraft, G.: The Early Bronze Age settlement of Fidvár, Vráble (Slovakia): reconstructing prehistoric settlement patterns using portable XRF. Journal of Archaeological Science. 40, 2942–2960 (2013). https://doi.org/10.1016/j.jas.2013.01.029.
83.
Freestone, I.C., Middleton, A.P.: Mineralogical applications of the analytical SEM in archaeology. Mineralogical Magazine. 51, 21–31 (1987).
84.
Ingo, G.M., Balbi, S., de Caro, T., Fragalà, I., Angelini, E., Bultrini, G.: Combined use of SEM-EDS, OM and XRD for the characterization of corrosion products grown on silver roman coins. Applied Physics A. 83, 493–497 (2006). https://doi.org/10.1007/s00339-006-3533-0.
85.
Martinón-Torres, M., Uribe-Villegas, M.A.: The prehistoric individual, connoisseurship and archaeological science: The Muisca goldwork of Colombia. Journal of Archaeological Science. 63, 136–155 (2015). https://doi.org/10.1016/j.jas.2015.08.014.
86.
Sax, M., Walsh, J.M., Freestone, I.C., Rankin, A.H., Meeks, N.D.: The origins of two purportedly pre-Columbian Mexican crystal skulls. Journal of Archaeological Science. 35, 2751–2760 (2008). https://doi.org/10.1016/j.jas.2008.05.007.
87.
Abe, Y., Nakai, I., Takahashi, K., Kawai, N., Yoshimura, S.: On-site analysis of archaeological artifacts excavated from the site on the outcrop at Northwest Saqqara, Egypt, by using a newly developed portable fluorescence spectrometer and diffractometer. Analytical and Bioanalytical Chemistry. 395, 1987–1996 (2009). https://doi.org/10.1007/s00216-009-3141-x.
88.
Cotte, M., Dumas, P., Taniguchi, Y., Checroun, E., Walter, P., Susini, J.: Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy. Comptes Rendus Physique. 10, 590–600 (2009). https://doi.org/10.1016/j.crhy.2009.03.016.
89.
De Benedetto, G.E., Laviano, R., Sabbatini, L., Zambonin, P.G.: Infrared spectroscopy in the mineralogical characterization of ancient pottery. Journal of Cultural Heritage. 3, 177–186 (2002). https://doi.org/10.1016/S1296-2074(02)01178-0.
90.
Eiland, M.L., Williams, Q.: Investigation of Islamic ceramics from Tell Tuneinir using X-ray diffraction. Geoarchaeology. 16, 875–903 (2001). https://doi.org/10.1002/gea.1025.
91.
Ricciardi, P., Colomban, P., Tournié, A., Macchiarola, M., Ayed, N.: A non-invasive study of Roman Age mosaic glass tesserae by means of Raman spectroscopy. Journal of Archaeological Science. 36, 2551–2559 (2009). https://doi.org/10.1016/j.jas.2009.07.008.
92.
Derrick, M.R., Stulik, D.C., Landry, J.M.: Infrared Spectroscopy in Conservation Science - infrared spectroscopy. Getty Conservation Institute, Los Angeles (1999).
93.
Young, M.L., Casadio, F., Schnepp, S., Pearlstein, E., Almer, J.D., Haeffner, D.R.: Non-invasive characterization of manufacturing techniques and corrosion of ancient Chinese bronzes and a later replica using synchrotron X-ray diffraction. Applied Physics A. 100, 635–646 (2010). https://doi.org/10.1007/s00339-010-5646-8.
94.
Archaeological and Anthropological Sciences. 1,.
95.
Ben-David, M., Flaherty, E.A.: Stable isotopes in mammalian research: a beginner’s guide. Journal of Mammalogy. 93, 312–328 (2012). https://doi.org/10.1644/11-MAMM-S-166.1.
96.
Alexander Bentley, R.: Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review. Journal of Archaeological Method and Theory. 13, 135–187 (2006). https://doi.org/10.1007/s10816-006-9009-x.
97.
Degryse, P.: Isotope-Ratio Techniques in Glass Studies. In: Janssens, K. (ed.) Modern Methods for Analysing Archaeological and Historical Glass. pp. 235–245. John Wiley & Sons Ltd, Oxford, UK (2013). https://doi.org/10.1002/9781118314234.ch10.
98.
Degryse, P., Henderson, J., Hodgins, G.: Isotopes in vitreous materials. Leuven University Press, Leuven, Belgium (2009).
99.
Freestone, I.C., Leslie, K.A., Thirlwall, M., Gorin-Rosen, Y.: Strontium Isotopes in the Investigation of Early Glass Production: Byzantine and Early Islamic Glass from the Near East*. Archaeometry. 45, 19–32 (2003). https://doi.org/10.1111/1475-4754.00094.
100.
HAUSTEIN, M., GILLIS, C., PERNICKA, E.: TIN ISOTOPY-A NEW METHOD FOR SOLVING OLD QUESTIONS. Archaeometry. 52, 816–832 (2010). https://doi.org/10.1111/j.1475-4754.2010.00515.x.
101.
Janssens, K.H.A.: Modern methods for analysing archaeological and historical glass. John Wiley & Sons Inc, Chichester, West Sussex, United Kingdom (2011).
102.
LEE-THORP, J.A.: ON ISOTOPES AND OLD BONES*. Archaeometry. 50, 925–950 (2008). https://doi.org/10.1111/j.1475-4754.2008.00441.x.
103.
Brothwell, D.R., Pollard, A.M.: Handbook of archaeological sciences. John Wiley, Chichester (2001).
104.
Hein, A., Tsolakidou, A., Iliopoulos, I., Mommsen, H., Buxeda i GarrigÃ3s, J., Montana, G., Kilikoglou, V.: Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. The Analyst. 127, 542–553 (2002). https://doi.org/10.1039/b109603f.
105.
Heginbotham, A., Bezur, A., Bouchard, M., Davis, J.M., Eremin, K., Frantz, J.H., Glinsman, L., Hayek, L.A., Hook, D., Kantarelou, V., McGath, A., Shugar, A., Sirois, J., S, D., Smith, R., Speakman, R.J.: An Evaluation of inter-laboratory reproducibility for quantitative XRF of historic copper Alloys. In: Mardikian, P., Chemello, C., Watters, C., and Hull, P. (eds.) In Metal 2010. Proceedings of the International Conference on Metal Conservation, Charleston, South Carolina, USA, October 11-15, 2010. pp. 178–188. Clemson University (2010).
106.
Kovacs, R., Schlosser, S., Staub, S.P., Schmiderer, A., Pernicka, E., Günther, D.: Characterization of calibration materials for trace element analysis and fingerprint studies of gold using LA-ICP-MS. Journal of Analytical Atomic Spectrometry. 24, (2009). https://doi.org/10.1039/b819685k.
107.
Baxter, M.J.: Exploratory multivariate analysis in archaeology. Edinburgh University Press, Edinburgh (1994).
108.
Baxter, M.J.: Statistics in archaeology. Arnold, London (2003).
109.
Baxter, M.J., Buck, C.E.: Data handling and statistical analysis. In: Modern analytical methods in art and archaeology. pp. 681–746. Wiley, New York (2000).
110.
BAXTER, M.J., FREESTONE, I.C.: LOG-RATIO COMPOSITIONAL DATA ANALYSIS IN ARCHAEOMETRY*. Archaeometry. 48, 511–531 (2006). https://doi.org/10.1111/j.1475-4754.2006.00270.x.
111.
Charlton, M.F., Blakelock, E., Martinon-Torres, M.: Investigating the production provenance of iron artifacts with multivariate methods. Journal of Archaeological Science. 39, 2280–2293 (2012).
112.
Drennan, R.D.: Statistics for archaeologists: a commonsense approach. Springer, New York (2009).
113.
Fletcher, M., Lock, G.R.: Digging numbers: elementary statistics for archaeologists. Oxford University Committee for Archaeology, Oxford (1991).
114.
Orton, Clive: Mathematics in archaeology. Collins, London (1980).
115.
Shennan, S.: Quantifying archaeology. University of Iowa Press, Iowa City (1997).
116.
Chippindale, C.: Colleagues, talking, writing, publishing. In: Handbook of archaeological methods. pp. 1339–1371. Altamira Press, Lanham, Md (2006).
117.
Sand-Jensen, K.: How to write consistently boring scientific literature. Oikos. 116, 723–727 (2007). https://doi.org/10.1111/j.0030-1299.2007.15674.x.
118.
White, P.: Producing the record. In: Archaeology in practice: a student guide to archaeological analyses. pp. 410–425. Blackwell, Malden, MA (2006).