1.
Archaeometry. 49(2). Available from: http://onlinelibrary.wiley.com.libproxy.ucl.ac.uk/doi/10.1111/arch.2007.49.issue-2/issuetoc;jsessionid=C29BB0DA1059927413EA82D1C17CC253.d03t04
2.
Archaeometry. 50(2). Available from: http://onlinelibrary.wiley.com.libproxy.ucl.ac.uk/doi/10.1111/arch.2008.50.issue-6/issuetoc
3.
Archaeometry. 50(6). Available from: http://onlinelibrary.wiley.com.libproxy.ucl.ac.uk/doi/10.1111/arch.2008.50.issue-6/issuetoc
4.
Artioli G, Angelini I. Scientific methods and cultural heritage: an introduction to the application of materials science to archaeometry and conservation science [Internet]. Oxford: Oxford University Press; 2010. Available from: http://UCL.eblib.com/patron/FullRecord.aspx?p=618614
5.
Bowman S. Science and the past. London: British Museum Press; 1991.
6.
Brothwell DR, Pollard AM. Handbook of archaeological sciences. Chichester: John Wiley; 2001.
7.
Demortier G, Adriaens A, European Cooperation in the Field of Scientific and Technical Research (Organization). COST G1 (Project), European Commission. Directorate General for Research. Ion beam study of art and archaeological objects. Luxembourg: Office for Official Publications of the European Communities; 2000.
8.
Dran JC, Salomon J, Calligaro T, Walter P. Ion beam analysis of art works: 14 years of use in the Louvre. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2004 Jun;219–220:7–15.
9.
Ciliberto E, Spoto G. Modern analytical methods in art and archaeology. New York: Wiley; 2000.
10.
Edwards HGM, Chalmers JM, Royal Society of Chemistry (Great Britain). Raman spectroscopy in archaeology and art history. Cambridge: Royal Society of Chemistry; 2005.
11.
Giumlia-Mair A, Albertson C, Boschian G, Giachi G, Iacomussi P, Pallecchi P, Rossi G, Shugar AN, Stock S. Surface characterisation techniques in the study and conservation of art and archaeological artefacts: a review. Materials Technology. 2010 Nov;25(5):245–261.
12.
Goffer Z. Archaeological chemistry. 2nd ed. Hoboken, N.J.: Wiley; 2007.
13.
Henderson J. Scientific analysis in archaeology and its interpretation. Oxford: Oxford University Committee for Archaeology, Institute of Archaeology; 1989.
14.
Henderson J. The science and archaeology of materials: an investigation of inorganic materials [Internet]. London: Routledge; 2000. Available from: https://ebookcentral.proquest.com/lib/UCL/detail.action?docID=1144554&pq-origsite=primo
15.
Janssens KHA, Grieken R van. Non-destructive microanalysis of cultural heritage materials. Amsterdam, London: Elsevier; 2004.
16.
Lambert JB. Traces of the past: unraveling the secrets of archaeology through chemistry. Reading, Mass: Addison-Wesley; 1997.
17.
Martini M, Milazzo M, Piacentini M, Società italiana di fisica, International School of Physics ‘Enrico Fermi’. Physics methods in archaeometry. Amsterdam: IOS Press; 2004.
18.
Martinón-Torres M, Rehren T. Archaeology, history and science: integrating approaches to ancient materials. Walnut Creek, CA: Left Coast Press; 2008.
19.
Moreau JF. Proceedings: ISA 2006 : 36th International Symposium on Archaeometry : 2-6 May 2006, Quebec City, Canada. Québec: CELAT, Université Laval; 2009.
20.
Arthur M. Sackler Colloquia of the National Academy of Sciences, National Academy of Sciences (U.S.). Scientific examination of art: modern techniques in conservation and analysis : National Academy of Sciences, Washington, D.C., March 19-21, 2003. Washington, D.C.: National Academies Press; 2005.
21.
Nesse WD. Introduction to optical mineralogy. 3rd ed. New York: Oxford University Press; 2004.
22.
Olsen SL. Scanning electron microscopy in archaeology. Oxford: B.A.R.; 1988.
23.
Parkes PA. Current scientific techniques in archaeology. London: Croom Helm; 1986.
24.
Pérez-Arantegui J, editor. Proceedings of the 34th International Symposium on Archaeometry [Internet]. 2006. Available from: http://ifc.dpz.es/publicaciones/ebooks/id/2610
25.
Pollard AM, Heron C, Royal Society of Chemistry (Great Britain), Armitage RA. Archaeological chemistry. Cambridge: Royal Society of Chemistry; 2017.
26.
Pollard AM, Batt C, Young S, Stern B. Analytical chemistry in archaeology. Cambridge: Cambridge University Press; 2007.
27.
Shackley MS. An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In: Shackley MS, editor. X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. New York, NY: Springer New York; 2011. p. 7–44.
28.
Torrence R, Rehren T, Martinon-Torres M. Scoping the Future of Archaeological Science: Papers in Honour of Richard Klein. Journal of Archaeological Science [Internet]. 2015;56. Available from: http://www.sciencedirect.com/science/journal/03054403/56
29.
Uda M, Demortier G, Nakai I, International Symposium on X-ray Archaeometry. X-rays for archaeology [Internet]. Dordrecht: Springer; 2005. Available from: https://link.springer.com/book/10.1007/1-4020-3581-0
30.
Adriaens A. Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochimica Acta Part B: Atomic Spectroscopy. 2005 Dec;60(12):1503–1516.
31.
De Atley SP, Bishop RL. Toward an integrated interface for archaeology and archaeometry. The ceramic legacy of Anna O Shepard [Internet]. Niwot, Colo: University Press of Colorado; 1991. p. 358–381. Available from: https://contentstore.cla.co.uk/secure/link?id=724ac537-6915-e811-80cd-005056af4099
32.
Hamilton E. The four scales of technical analysis; or ’how to make archaeometry more useful. Exploring the role of analytical scale in archaeological interpretation [Internet]. Oxford: Archaeopress; 2004. p. 45–48. Available from: https://contentstore.cla.co.uk/secure/link?id=1dfefd87-db0c-e811-80cd-005056af4099
33.
Killick D. Archaeology and archaeometry: From casual dating to a meaningful relationship? Antiquity [Internet]. Antiquity Publications, Ltd.; 1997;71(273):518–524. Available from: http://search.proquest.com/docview/217552149?accountid=14511
34.
Killick D. The awkward adolescence of archaeological science. Journal of Archaeological Science. 2015 Apr;56:242–247.
35.
Jones A. Archaeological theory and scientific practice. Cambridge: Cambridge University Press; 2001.
36.
Jones A. Archaeometry and materiality: materials-based analysis in theory and practice*. Archaeometry. 2004;46(3):327–338.
37.
Martinón-Torres M. Why should archaeologists take history and science seriously? Archaeology, history and science: integrating approaches to ancient materials [Internet]. Walnut Creek, CA: Left Coast Press; 2008. p. 15–36. Available from: http://ls-tlss.ucl.ac.uk/course-materials/ARCLG107_45457.pdf
38.
Martinón-Torres M, Killic DC. Archaeological Theories and Archaeological Sciences. In: Gardner A, Lake M, Sommer U, editors. The Oxford Handbook of Archaeological Theory [Internet]. 2015. Available from: http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199567942.001.0001/oxfordhb-9780199567942-e-004?rskey=F3hTAd&result=1
39.
Rehren T. Qantir-Piramesses and the organisation of the Egyptian glass industry. The social context of technological change: Egypt and the Near East, 1650-1550 BC : proceedings of a conference held at St Edmund Hall, Oxford, 12-14 September 2000 [Internet]. Oxford: Oxbow; 2001. p. 223–138. Available from: https://contentstore.cla.co.uk/secure/link?id=eadf6446-d60c-e811-80cd-005056af4099
40.
Sillar B, Tite MS. The challenge of ‘Technological choices’ for materials science approaches in archaeology. Archaeometry. 2000;42(1):2–20.
41.
Tite MS. Overview - materials study in archaeology. Handbook of archaeological sciences [Internet]. Chichester: John Wiley; 2001. p. 443–448. Available from: https://contentstore.cla.co.uk/secure/link?id=db56c214-7a15-e811-80cd-005056af4099
42.
Orton C. Sampling in archaeology. Cambridge: Cambridge University Press; 2000.
43.
Tite MS. Archaeological Collections: Invasive Sampling versus Object Integrity. Papers from the Institute of Archaeology. 2002 Nov 15;13.
44.
Tubb KW. Irreconcilable Differences? Problems with Unprovenanced Antiquities. Papers from the Institute of Archaeology. 2007 Nov 15;18.
45.
Hancock RGV. Elemental analysis. Modern analytical methods in art and archaeology. New York: Wiley; 2000. p. 11–20.
46.
Shackley M. An introduction to X-Ray Fluorescence (XRF) analysis in archaeology. X-ray fluorescence spectrometry (XRF) in geoarchaeology. New York: Springer; 2011. p. 7–44.
47.
Shackley M. An introduction to X-Ray Fluorescence (XRF) analysis in archaeology. X-ray fluorescence spectrometry (XRF) in geoarchaeology. New York: Springer; 2011. p. 7–44.
48.
Contrey RM, Goodman-Elgar M, Bettencourt N, Seyfarth A, Van Hoose A, Wolff JA. Calibration of a portable X-ray fluorescence spectrometer in the analysis of archaeological samples using influence coefficients. Geochemistry: Exploration, Environment, Analysis [Internet]. 2014;14(3). Available from: http://geea.lyellcollection.org.libproxy.ucl.ac.uk/content/14/3/291.full.pdf
49.
Frahm E, Doonan RCP. The technological versus methodological revolution of portable XRF in archaeology. Journal of Archaeological Science. 2013 Feb;40(2):1425–1434.
50.
Shackley M. Is there reliability and validity in portable X-ray fluorescence spectrometry (XRF)? SAA archaeological record. Santa Barbara: Society for American Archaeology; 2010;17–20.
51.
Shackley MS. Portable X-ray Fluorescence Spectrometry (pXRF): The Good, the Bad, and the Ugly. Archaeology Southwest Magazine [Internet]. 2012;26(2). Available from: http://www.archaeologysouthwest.org/pdf/pXRF_essay_shackley.pdf
52.
Shugar AN, Mass JL. Handheld XRF for art and archaeology [Internet]. Leuven: Leuven University Press; 2012. Available from: https://www.jstor.org/stable/j.ctt9qdzfs
53.
Shugar AN. Portable X-ray Fluorescence and Archaeology: Limitations of the Instrument and Suggested Methods To Achieve Desired Results. In: Armitage RA, Burton JH, editors. Archaeological chemistry VIII. Washington, DC: American Chemical Society; 2013. p. 173–189.
54.
Tykot RH. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations. Applied Spectroscopy. 2016 Jan;70(1):42–56.
55.
Charalambous A, Kassianidou V, Papasavvas G. A compositional study of Cypriot bronzes dating to the Early Iron Age using portable X-ray fluorescence spectrometry (pXRF). Journal of Archaeological Science. 2014 Jun;46:205–216.
56.
Dussubieux L, Walder H. Identifying American native and European smelted coppers with pXRF: a case study of artifacts from the Upper Great Lakes region. Journal of Archaeological Science. 2015 Jul;59:169–178.
57.
Kearns T, Martinón-Torres M, Rehren T. Metal to mould: alloy identification in experimental casting moulds using XRF. Historical metallurgy: journal of the Historical Metallurgy Society. Sheffield: Historical Metallurgy Society; 2010;44(1):48–58.
58.
Martinón-Torres M, Li XJ, Bevan A, Xia Y, Zhao K, Rehren T. Forty Thousand Arms for a Single Emperor: From Chemical Data to the Labor Organization Behind the Bronze Arrows of the Terracotta Army. Journal of Archaeological Method and Theory. 2014 Sep;21(3):534–562.
59.
Martinón-Torres M, Valcárcel Rojas R, Sáenz Samper J, Guerra MF. Metallic encounters in Cuba: The technology, exchange and meaning of metals before and after Columbus. Journal of Anthropological Archaeology. 2012 Dec;31(4):439–454.
60.
Martinón-Torres M, Uribe-Villegas MA. The prehistoric individual, connoisseurship and archaeological science: The Muisca goldwork of Colombia. Journal of Archaeological Science. 2015 Nov;63:136–155.
61.
Nicholas M, Manti P. Testing the applicability of handheld portable XRF to the characterisation of archaeological copper alloys. In: Bridgland J, editor. ICOM-CC 17th Triennial Conference Preprints, Melbourne [Internet]. Paris: International Council of Museums; 15AD. Available from: http://orca.cf.ac.uk/65469/
62.
Orfanou V, Rehren Th. A (not so) dangerous method: pXRF vs. EPMA-WDS analyses of copper-based artefacts. Archaeological and Anthropological Sciences. 2015 Sep;7(3):387–397.
63.
Scott RB, Eekelers K, Degryse P. Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-ray Fluorescence Spectrometry. Applied Spectroscopy. 2016 Jan;70(1):94–109.
64.
Scott RB, Eekelers K, Fredericks L, Degryse P. A methodology for qualitative archaeometallurgical fieldwork using a handheld X-ray fluorescence spectrometer. STAR: Science & Technology of Archaeological Research. 2015 Dec 21;1(2):70–80.
65.
Forster N, Grave P, Vickery N, Kealhofer L. Non-destructive analysis using PXRF: methodology and application to archaeological ceramics. X-Ray Spectrometry. 2011 Sep;40(5):389–398.
66.
Goren Y, Mommsen H, Klinger J. Non-destructive provenance study of cuneiform tablets using portable X-ray fluorescence (pXRF). Journal of Archaeological Science. 2011 Mar;38(3):684–696.
67.
Hunt AMW, Speakman RJ. Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science. 2015 Jan;53:626–638.
68.
Speakman RJ, Little NC, Creel D, Miller MR, Inanez JG. Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. Journal of Archaeological Science. 2011;38(12):3483–3496.
69.
Dungworth D, Girbal B. Walmer Castle, Deal, Kent: Analysis of Window Glass. English Heritage Research Department Report Series [Internet]. 2011;2011(2). Available from: http://archaeologydataservice.ac.uk/archives/view/greylit/details.cfm?id=11363
70.
Liu S, Li QH, Gan F, Zhang P, Lankton JW. Silk Road glass in Xinjiang, China: chemical compositional analysis and interpretation using a high-resolution portable XRF spectrometer. Journal of Archaeological Science. 2012 Jul;39(7):2128–2142.
71.
Nazaroff AJ, Prufer KM, Drake BL. Assessing the applicability of portable X-ray fluorescence spectrometry for obsidian provenance research in the Maya lowlands. Journal of Archaeological Science. 2010 Apr;37(4):885–895.
72.
Frahm E. Validity of ‘off-the-shelf’ handheld portable XRF for sourcing Near Eastern obsidian chip debris. Journal of Archaeological Science. 2013 Feb;40(2):1080–1092.
73.
Frahm E. Silo science and portable XRF in archaeology: a response to Speakman and Shackley. Journal of Archaeological Science. 2013 Feb;40(2):1435–1443.
74.
Frahm E. Is obsidian sourcing about geochemistry or archaeology? A reply to Speakman and Shackley. Journal of Archaeological Science. 2013 Feb;40(2):1444–1448.
75.
Milić M. PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe. Journal of Archaeological Science. 2014 Jan;41:285–296.
76.
Grave P, Attenbrow V, Sutherland L, Pogson R, Forster N. Non-destructive pXRF of mafic stone tools. Journal of Archaeological Science. 2012 Jun;39(6):1674–1686.
77.
Ogburn D, Sillar B, Sierra JC. Evaluating effects of chemical weathering and surface contamination on the in situ provenance analysis of building stones in the Cuzco region of Peru with portable XRF. Journal of Archaeological Science. 2013 Apr;40(4):1823–1837.
78.
Potts PJ, Williams-Thorpe O, Webb PC. The Bulk Analysis of Silicate Rocks by Portable X-Ray Fluorescence: Effect of Sample Mineralogy in Relation to the Size of the Excited Volume. Geostandards and Geoanalytical Research. 1997 Jun;21(1):29–41.
79.
Colombo C, Bracci S, Conti C, Greco M, Realini M. Non-invasive approach in the study of polychrome terracotta sculptures: employment of the portable XRF to investigate complex stratigraphy. X-Ray Spectrometry. 2011 Jul;40(4):273–279.
80.
Chaplin TD, Clark RJH, MartinÃ3n-Torres M. A combined Raman microscopy, XRF and SEM-EDX study of three valuable objects - A large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London. Journal of Molecular Structure. 2010 Jul;976(1–3):350–359.
81.
Eliyahu-Behar A, Shilstein S, Raban-Gerstel N, Goren Y, Gilboa A, Sharon I, Weiner S. An integrated approach to reconstructing primary activities from pit deposits: iron smithing and other activities at Tel Dor under Neo-Assyrian domination. Journal of Archaeological Science. 2008 Nov;35(11):2895–2908.
82.
Gauss RK, Bátora J, Nowaczinski E, Rassmann K, Schukraft G. The Early Bronze Age settlement of Fidvár, Vráble (Slovakia): reconstructing prehistoric settlement patterns using portable XRF. Journal of Archaeological Science. 2013 Jul;40(7):2942–2960.
83.
Freestone IC, Middleton AP. Mineralogical applications of the analytical SEM in archaeology. Mineralogical Magazine [Internet]. 1987;51:21–31. Available from: http://www.minersoc.org/pages/Archive-MM/Volume_51/51-359-21.pdf
84.
Ingo GM, Balbi S, de Caro T, Fragalà I, Angelini E, Bultrini G. Combined use of SEM-EDS, OM and XRD for the characterization of corrosion products grown on silver roman coins. Applied Physics A. 2006;83(4):493–497.
85.
Martinón-Torres M, Uribe-Villegas MA. The prehistoric individual, connoisseurship and archaeological science: The Muisca goldwork of Colombia. Journal of Archaeological Science. 2015 Nov;63:136–155.
86.
Sax M, Walsh JM, Freestone IC, Rankin AH, Meeks ND. The origins of two purportedly pre-Columbian Mexican crystal skulls. Journal of Archaeological Science. 2008 Oct;35(10):2751–2760.
87.
Abe Y, Nakai I, Takahashi K, Kawai N, Yoshimura S. On-site analysis of archaeological artifacts excavated from the site on the outcrop at Northwest Saqqara, Egypt, by using a newly developed portable fluorescence spectrometer and diffractometer. Analytical and Bioanalytical Chemistry. 2009;395(7):1987–1996.
88.
Cotte M, Dumas P, Taniguchi Y, Checroun E, Walter P, Susini J. Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy. Comptes Rendus Physique. 2009;10(7):590–600.
89.
De Benedetto GE, Laviano R, Sabbatini L, Zambonin PG. Infrared spectroscopy in the mineralogical characterization of ancient pottery. Journal of Cultural Heritage. 2002;3(3):177–186.
90.
Eiland ML, Williams Q. Investigation of Islamic ceramics from Tell Tuneinir using X-ray diffraction. Geoarchaeology. 2001;16(8):875–903.
91.
Ricciardi P, Colomban P, Tournié A, Macchiarola M, Ayed N. A non-invasive study of Roman Age mosaic glass tesserae by means of Raman spectroscopy. Journal of Archaeological Science. 2009;36(11):2551–2559.
92.
Derrick MR, Stulik DC, Landry JM. Infrared Spectroscopy in Conservation Science - infrared spectroscopy [Internet]. Los Angeles: Getty Conservation Institute; 1999. Available from: http://www.getty.edu/publications/virtuallibrary/0892364696.html
93.
Young ML, Casadio F, Schnepp S, Pearlstein E, Almer JD, Haeffner DR. Non-invasive characterization of manufacturing techniques and corrosion of ancient Chinese bronzes and a later replica using synchrotron X-ray diffraction. Applied Physics A. 2010;100(3):635–646.
94.
Archaeological and Anthropological Sciences. 1(3). Available from: http://link.springer.com/journal/12520/1/3/page/1
95.
Ben-David M, Flaherty EA. Stable isotopes in mammalian research: a beginner’s guide. Journal of Mammalogy. 2012 Apr 30;93(2):312–328.
96.
Alexander Bentley R. Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review. Journal of Archaeological Method and Theory. 2006 Sep;13(3):135–187.
97.
Degryse P. Isotope-Ratio Techniques in Glass Studies. In: Janssens K, editor. Modern Methods for Analysing Archaeological and Historical Glass [Internet]. Oxford, UK: John Wiley & Sons Ltd; 2013. p. 235–245. Available from: http://doi.wiley.com/10.1002/9781118314234.ch10
98.
Degryse P, Henderson J, Hodgins G. Isotopes in vitreous materials [Internet]. Leuven, Belgium: Leuven University Press; 2009. Available from: https://www.jstor.org/stable/j.ctt9qdx40
99.
Freestone IC, Leslie KA, Thirlwall M, Gorin-Rosen Y. Strontium Isotopes in the Investigation of Early Glass Production: Byzantine and Early Islamic Glass from the Near East*. Archaeometry. 2003 Feb;45(1):19–32.
100.
HAUSTEIN M, GILLIS C, PERNICKA E. TIN ISOTOPY-A NEW METHOD FOR SOLVING OLD QUESTIONS. Archaeometry. 2010 Oct;52(5):816–832.
101.
Janssens KHA. Modern methods for analysing archaeological and historical glass [Internet]. Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc; 2011. Available from: http://dx.doi.org/10.1002/9781118314234
102.
LEE-THORP JA. ON ISOTOPES AND OLD BONES*. Archaeometry. 2008 Dec;50(6):925–950.
103.
Brothwell DR, Pollard AM. Handbook of archaeological sciences. Chichester: John Wiley; 2001.
104.
Hein A, Tsolakidou A, Iliopoulos I, Mommsen H, Buxeda i GarrigÃ3s J, Montana G, Kilikoglou V. Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. The Analyst. 2002 Apr 4;127(4):542–553.
105.
Heginbotham A, Bezur A, Bouchard M, Davis JM, Eremin K, Frantz JH, Glinsman L, Hayek LA, Hook D, Kantarelou V, McGath A, Shugar A, Sirois J, S D, Smith R, Speakman RJ. An Evaluation of inter-laboratory reproducibility for quantitative XRF of historic copper Alloys. In: Mardikian P, Chemello C, Watters C, Hull P, editors. In Metal 2010 Proceedings of the International Conference on Metal Conservation, Charleston, South Carolina, USA, October 11-15, 2010 [Internet]. Clemson University; 2010. p. 178–188. Available from: http://www.getty.edu/museum/pdfs/heginbotham_metal2010_submitted2.pdf
106.
Kovacs R, Schlosser S, Staub SP, Schmiderer A, Pernicka E, Günther D. Characterization of calibration materials for trace element analysis and fingerprint studies of gold using LA-ICP-MS. Journal of Analytical Atomic Spectrometry. 2009;24(4).
107.
Baxter MJ. Exploratory multivariate analysis in archaeology [Internet]. Edinburgh: Edinburgh University Press; 1994. Available from: https://www.jstor.org/stable/j.ctv2sx9gfb
108.
Baxter MJ. Statistics in archaeology. London: Arnold; 2003.
109.
Baxter MJ, Buck CE. Data handling and statistical analysis. Modern analytical methods in art and archaeology [Internet]. New York: Wiley; 2000. p. 681–746. Available from: https://contentstore.cla.co.uk/secure/link?id=5381c5cf-6c15-e811-80cd-005056af4099
110.
BAXTER MJ, FREESTONE IC. LOG-RATIO COMPOSITIONAL DATA ANALYSIS IN ARCHAEOMETRY*. Archaeometry. 2006;48(3):511–531.
111.
Charlton MF, Blakelock E, Martinon-Torres M. Investigating the production provenance of iron artifacts with multivariate methods. Journal of Archaeological Science [Internet]. 2012;39(7):2280–2293. Available from: http://discovery.ucl.ac.uk/1375923/1/1375923.pdf
112.
Drennan RD. Statistics for archaeologists: a commonsense approach [Internet]. 2nd ed. New York: Springer; 2009. Available from: http://dx.doi.org/10.1007/978-1-4419-0413-3
113.
Fletcher M, Lock GR. Digging numbers: elementary statistics for archaeologists. Oxford: Oxford University Committee for Archaeology; 1991.
114.
Orton, Clive. Mathematics in archaeology. London: Collins; 1980.
115.
Shennan S. Quantifying archaeology [Internet]. 2nd ed. Iowa City: University of Iowa Press; 1997. Available from: https://www.jstor.org/stable/10.3366/j.ctvxcrtz3
116.
Chippindale C. Colleagues, talking, writing, publishing. Handbook of archaeological methods [Internet]. Lanham, Md: Altamira Press; 2006. p. 1339–1371. Available from: https://contentstore.cla.co.uk/secure/link?id=d9c1e291-e30c-e811-80cd-005056af4099
117.
Sand-Jensen K. How to write consistently boring scientific literature. Oikos. 2007;116(5):723–727.
118.
White P. Producing the record. Archaeology in practice: a student guide to archaeological analyses [Internet]. Malden, MA: Blackwell; 2006. p. 410–425. Available from: https://contentstore.cla.co.uk/secure/link?id=0e7f700a-df0c-e811-80cd-005056af4099