[1]
Al-Chalabi, A. et al. 2017. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nature Reviews Neurology. 13, 2 (Feb. 2017), 96–104. DOI:https://doi.org/10.1038/nrneurol.2016.182.
[2]
Andreasson, U. et al. 2016. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 3, (2016), 98–102. DOI:https://doi.org/10.1016/j.dadm.2016.05.005.
[3]
Badders, N.M. et al. 2018. Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy. Nature Medicine. 24, 4 (Mar. 2018), 427–437. DOI:https://doi.org/10.1038/nm.4500.
[4]
Beitel, L.K. et al. 2013. Mechanisms Mediating Spinal and Bulbar Muscular Atrophy: Investigations into Polyglutamine-Expanded Androgen Receptor Function and Dysfunction. Frontiers in Neurology. 4, (2013). DOI:https://doi.org/10.3389/fneur.2013.00053.
[5]
Belaya, K. et al. 2015. Mutations in                              cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 138, 9 (Sep. 2015), 2493–2504. DOI:https://doi.org/10.1093/brain/awv185.
[6]
Benatar, M. et al. 2016. ALS biomarkers for therapy development: State of the field and future directions. Muscle & Nerve. 53, 2 (Feb. 2016), 169–182. DOI:https://doi.org/10.1002/mus.24979.
[7]
Berlowitz, D.J. et al. 2016. Identifying who will benefit from non-invasive ventilation in amyotrophic lateral sclerosis/motor neurone disease in a clinical cohort. Journal of Neurology, Neurosurgery & Psychiatry. 87, 3 (Mar. 2016), 280–286. DOI:https://doi.org/10.1136/jnnp-2014-310055.
[8]
Birnkrant, D.J. et al. 2018. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. The Lancet Neurology. 17, 3 (Mar. 2018), 251–267. DOI:https://doi.org/10.1016/S1474-4422(18)30024-3.
[9]
Birnkrant, D.J. et al. 2018. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. The Lancet Neurology. 17, 4 (Apr. 2018), 347–361. DOI:https://doi.org/10.1016/S1474-4422(18)30025-5.
[10]
Birnkrant, D.J. et al. 2018. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. The Lancet Neurology. 17, 5 (May 2018), 445–455. DOI:https://doi.org/10.1016/S1474-4422(18)30026-7.
[11]
Bonanomi, D. and Pfaff, S.L. 2010. Motor Axon Pathfinding. Cold Spring Harbor Perspectives in Biology. 2, 3 (Mar. 2010), a001735–a001735. DOI:https://doi.org/10.1101/cshperspect.a001735.
[12]
Brownstone, R.M. and Bui, T.V. 2010. Spinal interneurons providing input to the final common path during locomotion. Breathe, Walk and Chew: The Neural Challenge: Part I. Elsevier. 81–95.
[13]
Carrì, M.T. et al. 2017. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochemical and Biophysical Research Communications. 483, 4 (Feb. 2017), 1187–1193. DOI:https://doi.org/10.1016/j.bbrc.2016.07.055.
[14]
Cortes, C.J. et al. 2014. Muscle Expression of Mutant Androgen Receptor Accounts for Systemic and Motor Neuron Disease Phenotypes in Spinal and Bulbar Muscular Atrophy. Neuron. 82, 2 (Apr. 2014), 295–307. DOI:https://doi.org/10.1016/j.neuron.2014.03.001.
[15]
Couratier, P. et al. 2016. Epidemiology of amyotrophic lateral sclerosis: A review of literature. Revue Neurologique. 172, 1 (Jan. 2016), 37–45. DOI:https://doi.org/10.1016/j.neurol.2015.11.002.
[16]
Crisp, S.J. et al. 2016. Autoimmune synaptopathies. Nature Reviews Neuroscience. 17, 2 (Feb. 2016), 103–117. DOI:https://doi.org/10.1038/nrn.2015.27.
[17]
Crisp, S.J. et al. 2016. Autoimmune synaptopathies. Nature Reviews Neuroscience. 17, 2 (Feb. 2016), 103–117. DOI:https://doi.org/10.1038/nrn.2015.27.
[18]
Cruz, P.M.R. et al. 2014. Congenital myasthenic syndromes and the neuromuscular junction. Current Opinion in Neurology. 27, 5 (Oct. 2014), 566–575. DOI:https://doi.org/10.1097/WCO.0000000000000134.
[19]
Darabid, H. et al. 2014. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nature Reviews Neuroscience. 15, 11 (Nov. 2014), 703–718. DOI:https://doi.org/10.1038/nrn3821.
[20]
Dasen, J.S. and Jessell, T.M. 2009. Chapter Six Hox Networks and the Origins of Motor Neuron Diversity. Hox Genes. Elsevier. 169–200.
[21]
Drory, V.E. et al. 2001. The value of muscle exercise in patients with amyotrophic lateral sclerosis. Journal of the Neurological Sciences. 191, 1–2 (Oct. 2001), 133–137. DOI:https://doi.org/10.1016/S0022-510X(01)00610-4.
[22]
Engel, A.G. et al. 2015. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. The Lancet Neurology. 14, 4 (Apr. 2015), 420–434. DOI:https://doi.org/10.1016/S1474-4422(14)70201-7.
[23]
Finkel, R.S. et al. 2018. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscular Disorders. 28, 3 (Mar. 2018), 197–207. DOI:https://doi.org/10.1016/j.nmd.2017.11.004.
[24]
Fratta, P. et al. 2014. Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology. 82, 23 (Jun. 2014), 2077–2084. DOI:https://doi.org/10.1212/WNL.0000000000000507.
[25]
Fuller, G. and Manford, M. 2010. Neurology: an illustrated colour text. Churchill Livingstone Elsevier.
[26]
Gendron, T.F. et al. 2017. Poly(GP) proteins are a useful pharmacodynamic marker for                              -associated amyotrophic lateral sclerosis. Science Translational Medicine. 9, 383 (Mar. 2017). DOI:https://doi.org/10.1126/scitranslmed.aai7866.
[27]
Gibson, S. and Haringer, V. 2015. Amyotrophic lateral sclerosis: clinical perspectives. Orphan Drugs: Research and Reviews. (Apr. 2015). DOI:https://doi.org/10.2147/ODRR.S63585.
[28]
Gilhus, N.E. 2016. Myasthenia Gravis. New England Journal of Medicine. 375, 26 (Dec. 2016), 2570–2581. DOI:https://doi.org/10.1056/NEJMra1602678.
[29]
Gordon, E. et al. 2016. Advances in neuroimaging in frontotemporal dementia. Journal of Neurochemistry. 138, (Aug. 2016), 193–210. DOI:https://doi.org/10.1111/jnc.13656.
[30]
Harland, R. 2000. Neural induction. Current Opinion in Genetics & Development. 10, 4 (Aug. 2000), 357–362. DOI:https://doi.org/10.1016/S0959-437X(00)00096-4.
[31]
Harwood, C.A. et al. 2012. Clinical aspects of motor neurone disease. Medicine. 40, 10 (Oct. 2012), 540–545. DOI:https://doi.org/10.1016/j.mpmed.2012.07.003.
[32]
Hughes, J. et al. 2011. Principles of early drug discovery. British Journal of Pharmacology. 162, 6 (Mar. 2011), 1239–1249. DOI:https://doi.org/10.1111/j.1476-5381.2010.01127.x.
[33]
Jacobson, L. et al. 1999. Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. Journal of Clinical Investigation. 103, 7 (Apr. 1999), 1031–1038. DOI:https://doi.org/10.1172/JCI5943.
[34]
Jessell, T.M. 2000. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Reviews Genetics. 1, 1 (Oct. 2000), 20–29. DOI:https://doi.org/10.1038/35049541.
[35]
Jones, R.A. et al. 2017. Cellular and Molecular Anatomy of the Human Neuromuscular Junction. Cell Reports. 21, 9 (Nov. 2017), 2348–2356. DOI:https://doi.org/10.1016/j.celrep.2017.11.008.
[36]
Kanning, K.C. et al. 2010. Motor Neuron Diversity in Development and Disease. Annual Review of Neuroscience. 33, 1 (Jun. 2010), 409–440. DOI:https://doi.org/10.1146/annurev.neuro.051508.135722.
[37]
Koneczny, I. et al. 2013. MuSK Myasthenia Gravis IgG4 Disrupts the Interaction of LRP4 with MuSK but Both IgG4 and IgG1-3 Can Disperse Preformed Agrin-Independent AChR Clusters. PLoS ONE. 8, 11 (Nov. 2013). DOI:https://doi.org/10.1371/journal.pone.0080695.
[38]
Koneczny, I. et al. 2014. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. Journal of Anatomy. 224, 1 (Jan. 2014), 29–35. DOI:https://doi.org/10.1111/joa.12034.
[39]
Kusner, L.L. and Kaminski, H.J. 2015. Myasthenia Gravis. Neurobiology of Brain Disorders. Elsevier. 135–150.
[40]
Ladle, D.R. et al. 2007. Assembly of Motor Circuits in the Spinal Cord: Driven to Function by Genetic and Experience-Dependent Mechanisms. Neuron. 56, 2 (Oct. 2007), 270–283. DOI:https://doi.org/10.1016/j.neuron.2007.09.026.
[41]
Laurá, M. et al. 2018. Prevalence and orthopedic management of foot and ankle deformities in Charcot-Marie-Tooth disease. Muscle & Nerve. 57, 2 (Feb. 2018), 255–259. DOI:https://doi.org/10.1002/mus.25724.
[42]
Leung, D.G. 2017. Other Proven and Putative Autoimmune Disorders of the Peripheral Nervous System. Oxford University Press.
[43]
Li, L. et al. 2018. Neuromuscular Junction Formation, Aging, and Disorders. Annual Review of Physiology. 80, 1 (Feb. 2018), 159–188. DOI:https://doi.org/10.1146/annurev-physiol-022516-034255.
[44]
Lieberman, A.P. et al. 2014. Peripheral Androgen Receptor Gene Suppression Rescues Disease in Mouse Models of Spinal and Bulbar Muscular Atrophy. Cell Reports. 7, 3 (May 2014), 774–784. DOI:https://doi.org/10.1016/j.celrep.2014.02.008.
[45]
Lin, G. et al. 2017. Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Fly Models of Human Diseases. Elsevier. 111–171.
[46]
Lu, C.-H. et al. 2015. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology. 84, 22 (Jun. 2015), 2247–2257. DOI:https://doi.org/10.1212/WNL.0000000000001642.
[47]
Malik, B. et al. 2011. Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Human Molecular Genetics. 20, 9 (May 2011), 1776–1786. DOI:https://doi.org/10.1093/hmg/ddr061.
[48]
Malik, B. et al. 2013. Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain. 136, 3 (Mar. 2013), 926–943. DOI:https://doi.org/10.1093/brain/aws343.
[49]
Manzano, R. et al. 2018. Beyond motor neurons: expanding the clinical spectrum in Kennedy’s disease. Journal of Neurology, Neurosurgery & Psychiatry. 89, 8 (Aug. 2018), 808–812. DOI:https://doi.org/10.1136/jnnp-2017-316961.
[50]
Maragakis, N.J. 2017. What can we learn from the edaravone development program for ALS? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 18, sup1 (Oct. 2017), 98–103. DOI:https://doi.org/10.1080/21678421.2017.1361446.
[51]
Mazzone, E.S. et al. 2017. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle & Nerve. 55, 6 (Jun. 2017), 869–874. DOI:https://doi.org/10.1002/mus.25430.
[52]
Mercuri, E. et al. 2018. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular Disorders. 28, 2 (Feb. 2018), 103–115. DOI:https://doi.org/10.1016/j.nmd.2017.11.005.
[53]
Meriggioli, M.N. and Sanders, D.B. 2009. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. The Lancet Neurology. 8, 5 (May 2009), 475–490. DOI:https://doi.org/10.1016/S1474-4422(09)70063-8.
[54]
Milioto, C. et al. 2017. Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes. Scientific Reports. 7, 1 (Dec. 2017). DOI:https://doi.org/10.1038/srep41046.
[55]
Mitsumoto, H. et al. 2014. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? The Lancet Neurology. 13, 11 (Nov. 2014), 1127–1138. DOI:https://doi.org/10.1016/S1474-4422(14)70129-2.
[56]
Monahan, Z. et al. 2016. Stress granules at the intersection of autophagy and ALS. Brain Research. 1649, (Oct. 2016), 189–200. DOI:https://doi.org/10.1016/j.brainres.2016.05.022.
[57]
Morgan, S. and Orrell, R.W. 2016. Pathogenesis of amyotrophic lateral sclerosis. British Medical Bulletin. 119, 1 (Sep. 2016), 87–98. DOI:https://doi.org/10.1093/bmb/ldw026.
[58]
Morren, J.A. and Galvez-Jimenez, N. 2012. Current and prospective disease-modifying therapies for amyotrophic lateral sclerosis. Expert Opinion on Investigational Drugs. 21, 3 (Mar. 2012), 297–320. DOI:https://doi.org/10.1517/13543784.2012.657303.
[59]
Nishimune, H. et al. 2008. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. The Journal of Cell Biology. 182, 6 (Sep. 2008), 1201–1215. DOI:https://doi.org/10.1083/jcb.200805095.
[60]
O’Connor, E. et al. 2018. Clinical and research strategies for limb-girdle congenital myasthenic syndromes. Annals of the New York Academy of Sciences. 1412, 1 (Jan. 2018), 102–112. DOI:https://doi.org/10.1111/nyas.13520.
[61]
Orrell, Richard WBarclay, Chris Diagnosis and management of motor neurone disease. Practitioner. 260, 17–21.
[62]
Otto, M. et al. 2012. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotrophic Lateral Sclerosis. 13, 1 (Jan. 2012), 1–10. DOI:https://doi.org/10.3109/17482968.2011.627589.
[63]
Peragallo, J.H. 2017. Pediatric Myasthenia Gravis. Seminars in Pediatric Neurology. 24, 2 (May 2017), 116–121. DOI:https://doi.org/10.1016/j.spen.2017.04.003.
[64]
Ramdharry, G.M. et al. 2014. A pilot study of proximal strength training in Charcot-Marie-Tooth disease. Journal of the Peripheral Nervous System. 19, 4 (Dec. 2014), 328–332. DOI:https://doi.org/10.1111/jns.12100.
[65]
Ramsey, D. et al. 2017. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLOS ONE. 12, 2 (Feb. 2017). DOI:https://doi.org/10.1371/journal.pone.0172346.
[66]
Reilly, M.M. et al. 2017. 221st ENMC International Workshop: Neuromuscular Disorders. 27, 12 (Dec. 2017), 1138–1142. DOI:https://doi.org/10.1016/j.nmd.2017.09.005.
[67]
Renton, A.E. et al. 2014. State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience. 17, 1 (Jan. 2014), 17–23. DOI:https://doi.org/10.1038/nn.3584.
[68]
Rodríguez Cruz, P.M. et al. 2014. Congenital myopathies with secondary neuromuscular transmission defects; A case report and review of the literature. Neuromuscular Disorders. 24, 12 (Dec. 2014), 1103–1110. DOI:https://doi.org/10.1016/j.nmd.2014.07.005.
[69]
Rodríguez Cruz, P.M. et al. 2014. Inherited disorders of the neuromuscular junction: an update. Journal of Neurology. 261, 11 (Nov. 2014), 2234–2243. DOI:https://doi.org/10.1007/s00415-014-7520-7.
[70]
Rudolf, R. et al. 2014. Degeneration of Neuromuscular Junction in Age and Dystrophy. Frontiers in Aging Neuroscience. 6, (May 2014). DOI:https://doi.org/10.3389/fnagi.2014.00099.
[71]
Ruegsegger, C. and Saxena, S. 2016. Proteostasis impairment in ALS. Brain Research. 1648, (Oct. 2016), 571–579. DOI:https://doi.org/10.1016/j.brainres.2016.03.032.
[72]
Scoto, M. et al. 2017. Therapeutic approaches for spinal muscular atrophy (SMA). Gene Therapy. 24, 9 (Sep. 2017), 514–519. DOI:https://doi.org/10.1038/gt.2017.45.
[73]
Singhal, N. and Martin, P.T. 2011. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Developmental Neurobiology. 71, 11 (Nov. 2011), 982–1005. DOI:https://doi.org/10.1002/dneu.20953.
[74]
Spillane, J. et al. 2015. Lambert-Eaton syndrome IgG inhibits transmitter release via P/Q Ca2+ channels. Neurology. 84, 6 (Feb. 2015), 575–579. DOI:https://doi.org/10.1212/WNL.0000000000001225.
[75]
Spillane, J. et al. 2010. Myasthenia and related disorders of the neuromuscular junction. Journal of Neurology, Neurosurgery & Psychiatry. 81, 8 (Aug. 2010), 850–857. DOI:https://doi.org/10.1136/jnnp.2008.169367.
[76]
Viegas, S. et al. 2012. Passive and active immunization models of MuSK-Ab positive myasthenia: Electrophysiological evidence for pre and postsynaptic defects. Experimental Neurology. 234, 2 (Apr. 2012), 506–512. DOI:https://doi.org/10.1016/j.expneurol.2012.01.025.
[77]
Vincent, A. 2002. Unravelling the pathogenesis of myasthenia gravis. Nature Reviews Immunology. 2, 10 (Oct. 2002), 797–804. DOI:https://doi.org/10.1038/nri916.
[78]
Westerberg, E. et al. 2018. The impact of physical exercise on neuromuscular function in Myasthenia gravis patients. Medicine. 97, 31 (Aug. 2018). DOI:https://doi.org/10.1097/MD.0000000000011510.
[79]
Wolfe, G.I. et al. 2016. Randomized Trial of Thymectomy in Myasthenia Gravis. New England Journal of Medicine. 375, 6 (Aug. 2016), 511–522. DOI:https://doi.org/10.1056/NEJMoa1602489.
[80]
Woollacott, I.O.C. and Rohrer, J.D. 2016. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. Journal of Neurochemistry. 138, (Aug. 2016), 6–31. DOI:https://doi.org/10.1111/jnc.13654.
[81]
Motor neurone disease: assessment and management | Guidance and guidelines | NICE.
[82]
Volume 58, Issue 3, March 2016. Volume 58, Issue 3, March 2016.