1.
Morren JA, Galvez-Jimenez N. Current and prospective disease-modifying therapies for amyotrophic lateral sclerosis. Expert Opinion on Investigational Drugs. 2012;21(3):297-320. doi:10.1517/13543784.2012.657303
2.
Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? The Lancet Neurology. 2014;13(11):1127-1138. doi:10.1016/S1474-4422(14)70129-2
3.
Maragakis NJ. What can we learn from the edaravone development program for ALS? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2017;18(sup1):98-103. doi:10.1080/21678421.2017.1361446
4.
Hughes J, Rees S, Kalindjian S, Philpott K. Principles of early drug discovery. British Journal of Pharmacology. 2011;162(6):1239-1249. doi:10.1111/j.1476-5381.2010.01127.x
5.
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. The Lancet Neurology. 2018;17(3):251-267. doi:10.1016/S1474-4422(18)30024-3
6.
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. The Lancet Neurology. 2018;17(4):347-361. doi:10.1016/S1474-4422(18)30025-5
7.
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. The Lancet Neurology. 2018;17(5):445-455. doi:10.1016/S1474-4422(18)30026-7
8.
Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular Disorders. 2018;28(2):103-115. doi:10.1016/j.nmd.2017.11.005
9.
Finkel RS, Mercuri E, Meyer OH, et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscular Disorders. 2018;28(3):197-207. doi:10.1016/j.nmd.2017.11.004
10.
Scoto M, Finkel RS, Mercuri E, Muntoni F. Therapeutic approaches for spinal muscular atrophy (SMA). Gene Therapy. 2017;24(9):514-519. doi:10.1038/gt.2017.45
11.
Ramsey D, Scoto M, Mayhew A, et al. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLOS ONE. 2017;12(2). doi:10.1371/journal.pone.0172346
12.
Mazzone ES, Mayhew A, Montes J, et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle & Nerve. 2017;55(6):869-874. doi:10.1002/mus.25430
13.
Westerberg E, Molin CJ, Spörndly Nees S, Widenfalk J, Punga AR. The impact of physical exercise on neuromuscular function in Myasthenia gravis patients. Medicine. 2018;97(31). doi:10.1097/MD.0000000000011510
14.
Peragallo JH. Pediatric Myasthenia Gravis. Seminars in Pediatric Neurology. 2017;24(2):116-121. doi:10.1016/j.spen.2017.04.003
15.
Laurá M, Singh D, Ramdharry G, et al. Prevalence and orthopedic management of foot and ankle deformities in Charcot-Marie-Tooth disease. Muscle & Nerve. 2018;57(2):255-259. doi:10.1002/mus.25724
16.
Reilly MM, Pareyson D, Burns J, et al. 221st ENMC International Workshop: Neuromuscular Disorders. 2017;27(12):1138-1142. doi:10.1016/j.nmd.2017.09.005
17.
Ramdharry GM, Pollard A, Anderson C, et al. A pilot study of proximal strength training in Charcot-Marie-Tooth disease. Journal of the Peripheral Nervous System. 2014;19(4):328-332. doi:10.1111/jns.12100
18.
Gibson S, Haringer V. Amyotrophic lateral sclerosis: clinical perspectives. Orphan Drugs: Research and Reviews. Published online April 2015. doi:10.2147/ODRR.S63585
19.
Berlowitz DJ, Howard ME, Fiore JF, et al. Identifying who will benefit from non-invasive ventilation in amyotrophic lateral sclerosis/motor neurone disease in a clinical cohort. Journal of Neurology, Neurosurgery & Psychiatry. 2016;87(3):280-286. doi:10.1136/jnnp-2014-310055
20.
Harwood CA, McDermott CJ, Shaw PJ. Clinical aspects of motor neurone disease. Medicine. 2012;40(10):540-545. doi:10.1016/j.mpmed.2012.07.003
21.
Drory VE, Goltsman E, Goldman Reznik J, Mosek A, Korczyn AD. The value of muscle exercise in patients with amyotrophic lateral sclerosis. Journal of the Neurological Sciences. 2001;191(1-2):133-137. doi:10.1016/S0022-510X(01)00610-4
22.
Al-Chalabi A, van den Berg LH, Veldink J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nature Reviews Neurology. 2017;13(2):96-104. doi:10.1038/nrneurol.2016.182
23.
Carrì MT, D’Ambrosi N, Cozzolino M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochemical and Biophysical Research Communications. 2017;483(4):1187-1193. doi:10.1016/j.bbrc.2016.07.055
24.
Lin G, Mao D, Bellen HJ. Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. In: Fly Models of Human Diseases. Vol 121. Elsevier; 2017:111-171. doi:10.1016/bs.ctdb.2016.07.004
25.
Monahan Z, Shewmaker F, Pandey UB. Stress granules at the intersection of autophagy and ALS. Brain Research. 2016;1649:189-200. doi:10.1016/j.brainres.2016.05.022
26.
Ruegsegger C, Saxena S. Proteostasis impairment in ALS. Brain Research. 2016;1648:571-579. doi:10.1016/j.brainres.2016.03.032
27.
Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience. 2014;17(1):17-23. doi:10.1038/nn.3584
28.
Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Reviews Genetics. 2000;1(1):20-29. doi:10.1038/35049541
29.
Harland R. Neural induction. Current Opinion in Genetics & Development. 2000;10(4):357-362. doi:10.1016/S0959-437X(00)00096-4
30.
Dasen JS, Jessell TM. Chapter Six Hox Networks and the Origins of Motor Neuron Diversity. In: Hox Genes. Vol 88. Elsevier; 2009:169-200. doi:10.1016/S0070-2153(09)88006-X
31.
Bonanomi D, Pfaff SL. Motor Axon Pathfinding. Cold Spring Harbor Perspectives in Biology. 2010;2(3):a001735-a001735. doi:10.1101/cshperspect.a001735
32.
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nature Reviews Neuroscience. 2014;15(11):703-718. doi:10.1038/nrn3821
33.
Kanning KC, Kaplan A, Henderson CE. Motor Neuron Diversity in Development and Disease. Annual Review of Neuroscience. 2010;33(1):409-440. doi:10.1146/annurev.neuro.051508.135722
34.
Ladle DR, Pecho-Vrieseling E, Arber S. Assembly of Motor Circuits in the Spinal Cord: Driven to Function by Genetic and Experience-Dependent Mechanisms. Neuron. 2007;56(2):270-283. doi:10.1016/j.neuron.2007.09.026
35.
Brownstone RM, Bui TV. Spinal interneurons providing input to the final common path during locomotion. In: Breathe, Walk and Chew: The Neural Challenge: Part I. Vol 187. Elsevier; 2010:81-95. doi:10.1016/B978-0-444-53613-6.00006-X
36.
Li L, Xiong WC, Mei L. Neuromuscular Junction Formation, Aging, and Disorders. Annual Review of Physiology. 2018;80(1):159-188. doi:10.1146/annurev-physiol-022516-034255
37.
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Developmental Neurobiology. 2011;71(11):982-1005. doi:10.1002/dneu.20953
38.
Nishimune H, Valdez G, Jarad G, et al. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. The Journal of Cell Biology. 2008;182(6):1201-1215. doi:10.1083/jcb.200805095
39.
Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of Neuromuscular Junction in Age and Dystrophy. Frontiers in Aging Neuroscience. 2014;6. doi:10.3389/fnagi.2014.00099
40.
Jones RA, Harrison C, Eaton SL, et al. Cellular and Molecular Anatomy of the Human Neuromuscular Junction. Cell Reports. 2017;21(9):2348-2356. doi:10.1016/j.celrep.2017.11.008
41.
O’Connor E, Töpf A, Zahedi RP, et al. Clinical and research strategies for limb-girdle congenital myasthenic syndromes. Annals of the New York Academy of Sciences. 2018;1412(1):102-112. doi:10.1111/nyas.13520
42.
Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. The Lancet Neurology. 2015;14(4):420-434. doi:10.1016/S1474-4422(14)70201-7
43.
Cruz PMR, Palace J, Beeson D. Congenital myasthenic syndromes and the neuromuscular junction. Current Opinion in Neurology. 2014;27(5):566-575. doi:10.1097/WCO.0000000000000134
44.
Rodríguez Cruz PM, Palace J, Beeson D. Inherited disorders of the neuromuscular junction: an update. Journal of Neurology. 2014;261(11):2234-2243. doi:10.1007/s00415-014-7520-7
45.
Belaya K, Rodríguez Cruz PM, Liu WW, et al. Mutations in                              cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015;138(9):2493-2504. doi:10.1093/brain/awv185
46.
Rodríguez Cruz PM, Sewry C, Beeson D, et al. Congenital myopathies with secondary neuromuscular transmission defects; A case report and review of the literature. Neuromuscular Disorders. 2014;24(12):1103-1110. doi:10.1016/j.nmd.2014.07.005
47.
Crisp SJ, Kullmann DM, Vincent A. Autoimmune synaptopathies. Nature Reviews Neuroscience. 2016;17(2):103-117. doi:10.1038/nrn.2015.27
48.
Gilhus NE. Myasthenia Gravis. New England Journal of Medicine. 2016;375(26):2570-2581. doi:10.1056/NEJMra1602678
49.
Kusner LL, Kaminski HJ. Myasthenia Gravis. In: Neurobiology of Brain Disorders. Elsevier; 2015:135-150. doi:10.1016/B978-0-12-398270-4.00010-0
50.
Leung DG. Other Proven and Putative Autoimmune Disorders of the Peripheral Nervous System. Vol 1. Oxford University Press; 2017. doi:10.1093/med/9780199937837.003.0098
51.
Spillane J, Beeson DJ, Kullmann DM. Myasthenia and related disorders of the neuromuscular junction. Journal of Neurology, Neurosurgery & Psychiatry. 2010;81(8):850-857. doi:10.1136/jnnp.2008.169367
52.
Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. The Lancet Neurology. 2009;8(5):475-490. doi:10.1016/S1474-4422(09)70063-8
53.
Spillane J, Ermolyuk Y, Cano-Jaimez M, et al. Lambert-Eaton syndrome IgG inhibits transmitter release via P/Q Ca2+ channels. Neurology. 2015;84(6):575-579. doi:10.1212/WNL.0000000000001225
54.
Wolfe GI, Kaminski HJ, Aban IB, et al. Randomized Trial of Thymectomy in Myasthenia Gravis. New England Journal of Medicine. 2016;375(6):511-522. doi:10.1056/NEJMoa1602489
55.
Orrell, Richard WBarclay, Chris. Diagnosis and management of motor neurone disease. Practitioner. 260:17-21. https://search.proquest.com/docview/1844334383/64C39DCAF3D346C0PQ/1?accountid=14511
56.
Morgan S, Orrell RW. Pathogenesis of amyotrophic lateral sclerosis. British Medical Bulletin. 2016;119(1):87-98. doi:10.1093/bmb/ldw026
57.
Fuller G, Manford M. Neurology: An Illustrated Colour Text. 3rd ed. Churchill Livingstone Elsevier; 2010. http://ucl.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3669595080004761&institutionId=4761&customerId=4760
58.
Motor neurone disease: assessment and management | Guidance and guidelines | NICE. https://www.nice.org.uk/guidance/ng42
59.
Couratier P, Corcia P, Lautrette G, Nicol M, Preux PM, Marin B. Epidemiology of amyotrophic lateral sclerosis: A review of literature. Revue Neurologique. 2016;172(1):37-45. doi:10.1016/j.neurol.2015.11.002
60.
Otto M, Bowser R, Turner M, et al. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotrophic Lateral Sclerosis. 2012;13(1):1-10. doi:10.3109/17482968.2011.627589
61.
Lu CH, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology. 2015;84(22):2247-2257. doi:10.1212/WNL.0000000000001642
62.
Benatar M, Boylan K, Jeromin A, et al. ALS biomarkers for therapy development: State of the field and future directions. Muscle & Nerve. 2016;53(2):169-182. doi:10.1002/mus.24979
63.
Andreasson U, Blennow K, Zetterberg H. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2016;3:98-102. doi:10.1016/j.dadm.2016.05.005
64.
Gendron TF, Chew J, Stankowski JN, et al. Poly(GP) proteins are a useful pharmacodynamic marker for                              -associated amyotrophic lateral sclerosis. Science Translational Medicine. 2017;9(383). doi:10.1126/scitranslmed.aai7866
65.
Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nature Reviews Immunology. 2002;2(10):797-804. doi:10.1038/nri916
66.
Jacobson L, Polizzi A, Morriss-Kay G, Vincent A. Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. Journal of Clinical Investigation. 1999;103(7):1031-1038. doi:10.1172/JCI5943
67.
Viegas S, Jacobson L, Waters P, et al. Passive and active immunization models of MuSK-Ab positive myasthenia: Electrophysiological evidence for pre and postsynaptic defects. Experimental Neurology. 2012;234(2):506-512. doi:10.1016/j.expneurol.2012.01.025
68.
Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. Journal of Anatomy. 2014;224(1):29-35. doi:10.1111/joa.12034
69.
Koneczny I, Cossins J, Waters P, Beeson D, Vincent A. MuSK Myasthenia Gravis IgG4 Disrupts the Interaction of LRP4 with MuSK but Both IgG4 and IgG1-3 Can Disperse Preformed Agrin-Independent AChR Clusters. PLoS ONE. 2013;8(11). doi:10.1371/journal.pone.0080695
70.
Crisp SJ, Kullmann DM, Vincent A. Autoimmune synaptopathies. Nature Reviews Neuroscience. 2016;17(2):103-117. doi:10.1038/nrn.2015.27
71.
Woollacott IOC, Rohrer JD. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. Journal of Neurochemistry. 2016;138:6-31. doi:10.1111/jnc.13654
72.
Gordon E, Rohrer JD, Fox NC. Advances in neuroimaging in frontotemporal dementia. Journal of Neurochemistry. 2016;138:193-210. doi:10.1111/jnc.13656
73.
Volume 58, Issue 3, March 2016. Volume 58, Issue 3, March 2016. https://link.springer.com/journal/12031/58/3
74.
Badders NM, Korff A, Miranda HC, et al. Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy. Nature Medicine. 2018;24(4):427-437. doi:10.1038/nm.4500
75.
Beitel LK, Alvarado C, Mokhtar S, Paliouras M, Trifiro M. Mechanisms Mediating Spinal and Bulbar Muscular Atrophy: Investigations into Polyglutamine-Expanded Androgen Receptor Function and Dysfunction. Frontiers in Neurology. 2013;4. doi:10.3389/fneur.2013.00053
76.
Cortes CJ, Ling SC, Guo LT, et al. Muscle Expression of Mutant Androgen Receptor Accounts for Systemic and Motor Neuron Disease Phenotypes in Spinal and Bulbar Muscular Atrophy. Neuron. 2014;82(2):295-307. doi:10.1016/j.neuron.2014.03.001
77.
Fratta P, Nirmalananthan N, Masset L, et al. Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology. 2014;82(23):2077-2084. doi:10.1212/WNL.0000000000000507
78.
Lieberman AP, Yu Z, Murray S, et al. Peripheral Androgen Receptor Gene Suppression Rescues Disease in Mouse Models of Spinal and Bulbar Muscular Atrophy. Cell Reports. 2014;7(3):774-784. doi:10.1016/j.celrep.2014.02.008
79.
Malik B, Nirmalananthan N, Bilsland LG, et al. Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Human Molecular Genetics. 2011;20(9):1776-1786. doi:10.1093/hmg/ddr061
80.
Malik B, Nirmalananthan N, Gray AL, La Spada AR, Hanna MG, Greensmith L. Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain. 2013;136(3):926-943. doi:10.1093/brain/aws343
81.
Manzano R, Sorarú G, Grunseich C, et al. Beyond motor neurons: expanding the clinical spectrum in Kennedy’s disease. Journal of Neurology, Neurosurgery & Psychiatry. 2018;89(8):808-812. doi:10.1136/jnnp-2017-316961
82.
Milioto C, Malena A, Maino E, et al. Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes. Scientific Reports. 2017;7(1). doi:10.1038/srep41046