1.
Morren, J. A. & Galvez-Jimenez, N. Current and prospective disease-modifying therapies for amyotrophic lateral sclerosis. Expert Opinion on Investigational Drugs 21, 297–320 (2012).
2.
Mitsumoto, H., Brooks, B. R. & Silani, V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? The Lancet Neurology 13, 1127–1138 (2014).
3.
Maragakis, N. J. What can we learn from the edaravone development program for ALS? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 18, 98–103 (2017).
4.
Hughes, J., Rees, S., Kalindjian, S. & Philpott, K. Principles of early drug discovery. British Journal of Pharmacology 162, 1239–1249 (2011).
5.
Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. The Lancet Neurology 17, 251–267 (2018).
6.
Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. The Lancet Neurology 17, 347–361 (2018).
7.
Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. The Lancet Neurology 17, 445–455 (2018).
8.
Mercuri, E. et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular Disorders 28, 103–115 (2018).
9.
Finkel, R. S. et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscular Disorders 28, 197–207 (2018).
10.
Scoto, M., Finkel, R. S., Mercuri, E. & Muntoni, F. Therapeutic approaches for spinal muscular atrophy (SMA). Gene Therapy 24, 514–519 (2017).
11.
Ramsey, D. et al. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLOS ONE 12, (2017).
12.
Mazzone, E. S. et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle & Nerve 55, 869–874 (2017).
13.
Westerberg, E., Molin, C. J., Spörndly Nees, S., Widenfalk, J. & Punga, A. R. The impact of physical exercise on neuromuscular function in Myasthenia gravis patients. Medicine 97, (2018).
14.
Peragallo, J. H. Pediatric Myasthenia Gravis. Seminars in Pediatric Neurology 24, 116–121 (2017).
15.
Laurá, M. et al. Prevalence and orthopedic management of foot and ankle deformities in Charcot-Marie-Tooth disease. Muscle & Nerve 57, 255–259 (2018).
16.
Reilly, M. M. et al. 221st ENMC International Workshop: Neuromuscular Disorders 27, 1138–1142 (2017).
17.
Ramdharry, G. M. et al. A pilot study of proximal strength training in Charcot-Marie-Tooth disease. Journal of the Peripheral Nervous System 19, 328–332 (2014).
18.
Gibson, S. & Haringer, V. Amyotrophic lateral sclerosis: clinical perspectives. Orphan Drugs: Research and Reviews (2015) doi:10.2147/ODRR.S63585.
19.
Berlowitz, D. J. et al. Identifying who will benefit from non-invasive ventilation in amyotrophic lateral sclerosis/motor neurone disease in a clinical cohort. Journal of Neurology, Neurosurgery & Psychiatry 87, 280–286 (2016).
20.
Harwood, C. A., McDermott, C. J. & Shaw, P. J. Clinical aspects of motor neurone disease. Medicine 40, 540–545 (2012).
21.
Drory, V. E., Goltsman, E., Goldman Reznik, J., Mosek, A. & Korczyn, A. D. The value of muscle exercise in patients with amyotrophic lateral sclerosis. Journal of the Neurological Sciences 191, 133–137 (2001).
22.
Al-Chalabi, A., van den Berg, L. H. & Veldink, J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nature Reviews Neurology 13, 96–104 (2017).
23.
Carrì, M. T., D’Ambrosi, N. & Cozzolino, M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochemical and Biophysical Research Communications 483, 1187–1193 (2017).
24.
Lin, G., Mao, D. & Bellen, H. J. Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. in Fly Models of Human Diseases vol. 121 111–171 (Elsevier, 2017).
25.
Monahan, Z., Shewmaker, F. & Pandey, U. B. Stress granules at the intersection of autophagy and ALS. Brain Research 1649, 189–200 (2016).
26.
Ruegsegger, C. & Saxena, S. Proteostasis impairment in ALS. Brain Research 1648, 571–579 (2016).
27.
Renton, A. E., Chiò, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience 17, 17–23 (2014).
28.
Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Reviews Genetics 1, 20–29 (2000).
29.
Harland, R. Neural induction. Current Opinion in Genetics & Development 10, 357–362 (2000).
30.
Dasen, J. S. & Jessell, T. M. Chapter Six Hox Networks and the Origins of Motor Neuron Diversity. in Hox Genes vol. 88 169–200 (Elsevier, 2009).
31.
Bonanomi, D. & Pfaff, S. L. Motor Axon Pathfinding. Cold Spring Harbor Perspectives in Biology 2, a001735–a001735 (2010).
32.
Darabid, H., Perez-Gonzalez, A. P. & Robitaille, R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nature Reviews Neuroscience 15, 703–718 (2014).
33.
Kanning, K. C., Kaplan, A. & Henderson, C. E. Motor Neuron Diversity in Development and Disease. Annual Review of Neuroscience 33, 409–440 (2010).
34.
Ladle, D. R., Pecho-Vrieseling, E. & Arber, S. Assembly of Motor Circuits in the Spinal Cord: Driven to Function by Genetic and Experience-Dependent Mechanisms. Neuron 56, 270–283 (2007).
35.
Brownstone, R. M. & Bui, T. V. Spinal interneurons providing input to the final common path during locomotion. in Breathe, Walk and Chew: The Neural Challenge: Part I vol. 187 81–95 (Elsevier, 2010).
36.
Li, L., Xiong, W.-C. & Mei, L. Neuromuscular Junction Formation, Aging, and Disorders. Annual Review of Physiology 80, 159–188 (2018).
37.
Singhal, N. & Martin, P. T. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Developmental Neurobiology 71, 982–1005 (2011).
38.
Nishimune, H. et al. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. The Journal of Cell Biology 182, 1201–1215 (2008).
39.
Rudolf, R., Khan, M. M., Labeit, S. & Deschenes, M. R. Degeneration of Neuromuscular Junction in Age and Dystrophy. Frontiers in Aging Neuroscience 6, (2014).
40.
Jones, R. A. et al. Cellular and Molecular Anatomy of the Human Neuromuscular Junction. Cell Reports 21, 2348–2356 (2017).
41.
O’Connor, E. et al. Clinical and research strategies for limb-girdle congenital myasthenic syndromes. Annals of the New York Academy of Sciences 1412, 102–112 (2018).
42.
Engel, A. G., Shen, X.-M., Selcen, D. & Sine, S. M. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. The Lancet Neurology 14, 420–434 (2015).
43.
Cruz, P. M. R., Palace, J. & Beeson, D. Congenital myasthenic syndromes and the neuromuscular junction. Current Opinion in Neurology 27, 566–575 (2014).
44.
Rodríguez Cruz, P. M., Palace, J. & Beeson, D. Inherited disorders of the neuromuscular junction: an update. Journal of Neurology 261, 2234–2243 (2014).
45.
Belaya, K. et al. Mutations in                              cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 138, 2493–2504 (2015).
46.
Rodríguez Cruz, P. M. et al. Congenital myopathies with secondary neuromuscular transmission defects; A case report and review of the literature. Neuromuscular Disorders 24, 1103–1110 (2014).
47.
Crisp, S. J., Kullmann, D. M. & Vincent, A. Autoimmune synaptopathies. Nature Reviews Neuroscience 17, 103–117 (2016).
48.
Gilhus, N. E. Myasthenia Gravis. New England Journal of Medicine 375, 2570–2581 (2016).
49.
Kusner, L. L. & Kaminski, H. J. Myasthenia Gravis. in Neurobiology of Brain Disorders 135–150 (Elsevier, 2015). doi:10.1016/B978-0-12-398270-4.00010-0.
50.
Leung, D. G. Other Proven and Putative Autoimmune Disorders of the Peripheral Nervous System. vol. 1 (Oxford University Press, 2017).
51.
Spillane, J., Beeson, D. J. & Kullmann, D. M. Myasthenia and related disorders of the neuromuscular junction. Journal of Neurology, Neurosurgery & Psychiatry 81, 850–857 (2010).
52.
Meriggioli, M. N. & Sanders, D. B. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. The Lancet Neurology 8, 475–490 (2009).
53.
Spillane, J. et al. Lambert-Eaton syndrome IgG inhibits transmitter release via P/Q Ca2+ channels. Neurology 84, 575–579 (2015).
54.
Wolfe, G. I. et al. Randomized Trial of Thymectomy in Myasthenia Gravis. New England Journal of Medicine 375, 511–522 (2016).
55.
Orrell, Richard WBarclay, Chris. Diagnosis and management of motor neurone disease. Practitioner 260, 17–21.
56.
Morgan, S. & Orrell, R. W. Pathogenesis of amyotrophic lateral sclerosis. British Medical Bulletin 119, 87–98 (2016).
57.
Fuller, G. & Manford, M. Neurology: an illustrated colour text. (Churchill Livingstone Elsevier, 2010).
58.
Motor neurone disease: assessment and management | Guidance and guidelines | NICE.
59.
Couratier, P. et al. Epidemiology of amyotrophic lateral sclerosis: A review of literature. Revue Neurologique 172, 37–45 (2016).
60.
Otto, M. et al. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotrophic Lateral Sclerosis 13, 1–10 (2012).
61.
Lu, C.-H. et al. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84, 2247–2257 (2015).
62.
Benatar, M. et al. ALS biomarkers for therapy development: State of the field and future directions. Muscle & Nerve 53, 169–182 (2016).
63.
Andreasson, U., Blennow, K. & Zetterberg, H. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 3, 98–102 (2016).
64.
Gendron, T. F. et al. Poly(GP) proteins are a useful pharmacodynamic marker for                              -associated amyotrophic lateral sclerosis. Science Translational Medicine 9, (2017).
65.
Vincent, A. Unravelling the pathogenesis of myasthenia gravis. Nature Reviews Immunology 2, 797–804 (2002).
66.
Jacobson, L., Polizzi, A., Morriss-Kay, G. & Vincent, A. Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. Journal of Clinical Investigation 103, 1031–1038 (1999).
67.
Viegas, S. et al. Passive and active immunization models of MuSK-Ab positive myasthenia: Electrophysiological evidence for pre and postsynaptic defects. Experimental Neurology 234, 506–512 (2012).
68.
Koneczny, I., Cossins, J. & Vincent, A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. Journal of Anatomy 224, 29–35 (2014).
69.
Koneczny, I., Cossins, J., Waters, P., Beeson, D. & Vincent, A. MuSK Myasthenia Gravis IgG4 Disrupts the Interaction of LRP4 with MuSK but Both IgG4 and IgG1-3 Can Disperse Preformed Agrin-Independent AChR Clusters. PLoS ONE 8, (2013).
70.
Crisp, S. J., Kullmann, D. M. & Vincent, A. Autoimmune synaptopathies. Nature Reviews Neuroscience 17, 103–117 (2016).
71.
Woollacott, I. O. C. & Rohrer, J. D. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. Journal of Neurochemistry 138, 6–31 (2016).
72.
Gordon, E., Rohrer, J. D. & Fox, N. C. Advances in neuroimaging in frontotemporal dementia. Journal of Neurochemistry 138, 193–210 (2016).
73.
Volume 58, Issue 3, March 2016. Volume 58, Issue 3, March 2016.
74.
Badders, N. M. et al. Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy. Nature Medicine 24, 427–437 (2018).
75.
Beitel, L. K., Alvarado, C., Mokhtar, S., Paliouras, M. & Trifiro, M. Mechanisms Mediating Spinal and Bulbar Muscular Atrophy: Investigations into Polyglutamine-Expanded Androgen Receptor Function and Dysfunction. Frontiers in Neurology 4, (2013).
76.
Cortes, C. J. et al. Muscle Expression of Mutant Androgen Receptor Accounts for Systemic and Motor Neuron Disease Phenotypes in Spinal and Bulbar Muscular Atrophy. Neuron 82, 295–307 (2014).
77.
Fratta, P. et al. Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology 82, 2077–2084 (2014).
78.
Lieberman, A. P. et al. Peripheral Androgen Receptor Gene Suppression Rescues Disease in Mouse Models of Spinal and Bulbar Muscular Atrophy. Cell Reports 7, 774–784 (2014).
79.
Malik, B. et al. Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Human Molecular Genetics 20, 1776–1786 (2011).
80.
Malik, B. et al. Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain 136, 926–943 (2013).
81.
Manzano, R. et al. Beyond motor neurons: expanding the clinical spectrum in Kennedy’s disease. Journal of Neurology, Neurosurgery & Psychiatry 89, 808–812 (2018).
82.
Milioto, C. et al. Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes. Scientific Reports 7, (2017).