1.
Inman, K. & Rudin, N. The origin of evidence. Forensic Science International 126, 11–16 (2002).
2.
Morgan, R. M., Wiltshire, P., Parker, A. & Bull, P. A. The role of forensic geoscience in wildlife crime detection. Forensic Science International 162, 152–162 (2006).
3.
Morgan, R. M. & Bull, P. A. The philosophy, nature and practice of forensic sediment analysis. Progress in Physical Geography 31, 43–58 (2007).
4.
Ruffell, A. & McKinley, J. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations. Earth-Science Reviews 69, 235–247 (2005).
5.
Jonathan. J. Koehler, M. J. S. The Individualization Fallacy in Forensic Science Evidence. 61, 199–219 (2008).
6.
Cole, S. A. Forensic culture as epistemic culture: The sociology of forensic science. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44, 36–46 (2013).
7.
Jasanoff, S. Just Evidence: The Limits of Science in the Legal Process. The Journal of Law, Medicine Ethics 34, 328–341 (2006).
8.
Kiely, T. F. Forensic evidence: science and the criminal law. (CRC Press, 2006).
9.
Kirk, P. L. Crime investigation. (John Wiley & Sons, 1974).
10.
Michael Lynch and Sheila Jasanoff. Introduction: Contested Identities: Science, Law and Forensic Practice. Social Studies of Science 28, 675–686 (1998).
11.
Morgan, R. M. & Bull, P. A. Data Interpretation in Forensic Sediment and Soil Geochemistry. Environmental Forensics 7, 325–334 (2006).
12.
Rawlins, B. G. et al. Potential and Pitfalls in Establishing the Provenance of Earth-Related Samples in Forensic Investigations. Journal of Forensic Sciences 51, 832–845 (2006).
13.
BBC Radio 4 - The Infinite Monkey Cage, Series 12, Forensic Science.
14.
The Forensics Library. http://aboutforensics.co.uk/.
15.
BBC Radio 4 - Forensics in Crisis.
16.
Hamzelou, J. Hair analysis on trial after FBI admits to using flawed evidence. (2015).
17.
Drahl, C. & Widener, A. Forcing Change In Forensic Science. 92, 10–15 (2014).
18.
BBC Radio 4 - The Life Scientific, Niamh Nic Daeid.
19.
BBC Four - Catching History’s Criminals: The Forensics Story.
20.
BBC Radio 4 - The Report, Forensic Science.
21.
Balding, D. J. & Buckleton, J. Interpreting low template DNA profiles. Forensic Science International: Genetics 4, 1–10 (2009).
22.
Jasanoff, S. Law’s Knowledge: Science for Justice in Legal Settings. American Journal of Public Health 95, S49–S58 (2005).
23.
Morgan, RM. The relevance of the evolution of experimental studies for the interpretation and evaluation of some trace physical evidence. Science & Justice (2009).
24.
Thompson, W. C. & Schumann, E. L. Interpretation of statistical evidence in criminal trials: The prosecutor’s fallacy and the defense attorney’s fallacy. Law and Human Behavior 11, 167–187 (1987).
25.
Morgan, R. M. & Bull, P. A. Forensic Geoscience and Crime detection: Identification, interpretation and presentation in forensic geoscience. 127, 73–90 (2007).
26.
Morgan, R. M. et al. The relevance of the evolution of experimental studies for the interpretation and evaluation of some trace physical evidence. Science & Justice 49, 277–285 (2009).
27.
Morgan, R. M., Flynn, J., Sena, V. & Bull, P. A. Experimental forensic studies of the preservation of pollen in vehicle fires. Science & Justice 54, 141–145 (2014).
28.
Bull, P. A., Morgan, R. M., Sagovsky, A. & Hughes, G. J. A. The Transfer and Persistence of Trace Particulates: Experimental studies using clothing fabrics. Science & Justice 46, 185–195 (2006).
29.
Chisum, W. J. & Turvey, B. E. Crime Reconstruction. (Academic Press, 2011).
30.
Dachs, J., McNaught, I. J. & Robertson, J. The persistence of human scalp hair on clothing fabrics. Forensic Science International 138, 27–36 (2003).
31.
Morgan, R. M., French, J. C., O’Donnell, L. & Bull, P. A. The reincorporation and redistribution of trace geoforensic particulates on clothing: An introductory study. Science & Justice 50, 195–199 (2010).
32.
Pounds, C. A. & Smalldon, K. W. The Transfer of Fibres between Clothing Materials During Simulated Contacts and their Persistence During Wear. Journal of the Forensic Science Society 15, 29–37 (1975).
33.
Sugita, R. & Marumo, Y. Validity of color examination for forensic soil identification. Forensic Science International 83, 201–210 (1996).
34.
Morgan, R. M., Flynn, J., Sena, V. & Bull, P. A. Experimental forensic studies of the preservation of pollen in vehicle fires. Science & Justice 54, 141–145 (2014).
35.
Morgan, RM. The spatial and temporal distribution of pollen in a room: forensic implications. (2014).
36.
The ‘CSI effect’. (2010).
37.
Solved- Trace Evidence. (2008).
38.
Allen, T. J. & Scranage, J. K. The transfer of glass—part 1. Forensic Science International 93, 167–174 (1998).
39.
Allen, T. J., Hoefler, K. & Rose, S. The transfer of glass—part 3. Forensic Science International 93, 195–200 (1998).
40.
Schweitzer, N.J. THE CSI EFFECT: POPULAR FICTION ABOUT FORENSIC SCIENCE AFFECTS THE PUBLIC’S EXPECTATIONS ABOUT REAL FORENSIC SCIENCE. Jurimetrics 47, 357–364.
41.
Dachs, J., McNaught, I. J. & Robertson, J. The persistence of human scalp hair on clothing fabrics. Forensic Science International 138, 27–36 (2003).
42.
French, J. C., Morgan, R. M., Baxendell, P. & Bull, P. A. Multiple transfers of particulates and their dissemination within contact networks. Science & Justice 52, 33–41 (2012).
43.
French, J. The secondary transfer of gunshot residue: an experimental investigation carried out with SEM-EDX analysis. X-RAY SPECTROMETRY (2014).
44.
Grieve, M. C., Dunlop, J. & Haddock, P. S. Transfer experiments with acrylic fibres. Forensic Science International 40, 267–277 (1989).
45.
Grieve, M. C. Glitter particles—an unusual source of trace evidence? Journal of the Forensic Science Society 27, 405–412 (1987).
46.
Garrett, Brandon L. Invalid forensic science testimony and wrongful convictions. Virginia Law Review 95, 1–97.
47.
Pringle, J. K. et al. The use of geoscience methods for terrestrial forensic searches. Earth-Science Reviews 114, 108–123 (2012).
48.
Ruffell, A. & McKinley, J. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations. Earth-Science Reviews 69, 235–247 (2005).
49.
Ruffell, A., Pringle, J. K. & Forbes, S. Search protocols for hidden forensic objects beneath floors and within walls. Forensic Science International 237, 137–145 (2014).
50.
Ruffell, A. & McKinley, J. Forensic geomorphology. Geomorphology 206, 14–22 (2014).
51.
Bevan, B. W. The search for graves. 56, 1310–1319 (1991).
52.
G. Clark Davenport. Remote Sensing Applications in Forensic Investigations. Historical Archaeology 35, 87–100 (2001).
53.
Fenning, P. J. & Donnelly, L. J. Geophysical techniques for forensic investigation. 232, 11–20 (2004).
54.
Hansen, J. D. & Pringle, J. K. Comparison of magnetic, electrical and ground penetrating radar surveys to detect buried forensic objects in semi-urban and domestic patio environments. 384, 229–251 (2013).
55.
Scott, J. & Hunter, J. R. Environmental influences on resistivity mapping for the location of clandestine graves. 232, 33–38 (2004).
56.
Beck, Richard A. Remote Sensing and GIS as Counterterrorism Tools in the Afghanistan War: A Case Study of the Zhawar Kili Region. The Professional Geographer 55,.
57.
Pringle, J. K., Holland, C., Szkornik, K. & Harrison, M. Establishing forensic search methodologies and geophysical surveying for the detection of clandestine graves in coastal beach environments. Forensic Science International 219, e29–e36 (2012).
58.
Morgan, R. M. & Bull, P. A. Data Interpretation in Forensic Sediment and Soil Geochemistry. Environmental Forensics 7, 325–334 (2006).
59.
Gepard GPR ground penetrating radar - Applications and functionality. (17AD).
63.
Hanson, I. D. The importance of stratigraphy in forensic investigation. Geological Society, London, Special Publications 232, 39–47 (2004).
64.
Holzer, Thomas L. Seismograms offer insight into Oklahoma City bombing. Eos 77,.
65.
Koper, K. D., Wallace, T. C., Taylor, S. R. & Hartse, H. E. Forensic seismology and the sinking of the Kursk [\textit{Kursk}]. Eos, Transactions American Geophysical Union 82, 37–37 (2001).
66.
Scott, J. & Hunter, J. R. Environmental influences on resistivity mapping for the location of clandestine graves. Geological Society, London, Special Publications 232, 33–38 (2004).
67.
Bull, P. A., Parker, A. & Morgan, R. M. The forensic analysis of soils and sediment taken from the cast of a footprint. Forensic Science International 162, 6–12 (2006).
68.
Bull, P. A. & Morgan, R. M. Sediment Fingerprints: A forensic technique using quartz sand grains. Science & Justice 46, 107–124 (2006).
69.
Dawson, L. A. & Hillier, S. Measurement of soil characteristics for forensic applications. Surface and Interface Analysis 42, 363–377 (2010).
70.
Morgan, R. M., Robertson, J., Lennard, C., Hubbard, K. & Bull, P. A. Quartz grain surface textures of soils and sediments from Canberra, Australia: A forensic reconstruction tool. Australian Journal of Forensic Sciences 42, 169–179 (2010).
71.
Bailey, M. J., Morgan, R. M., Comini, P., Calusi, S. & Bull, P. A. Evaluation of Particle-Induced X-ray Emission and Particle-Induced γ-ray Emission of Quartz Grains for Forensic Trace Sediment Analysis. Analytical Chemistry 84, 2260–2267 (2012).
72.
Konopinski, D. I., Hudziak, S., Morgan, R. M., Bull, P. A. & Kenyon, A. J. Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis. Forensic Science International 223, 245–255 (2012).
73.
Newell, A. J. et al. Automated Texture Recognition of Quartz Sand Grains for Forensic Applications*. Journal of Forensic Sciences 57, 1285–1289 (2012).
74.
Sugita, R. & Marumo, Y. Screening of soil evidence by a combination of simple techniques: validity of particle size distribution. Forensic Science International 122, 155–158 (2001).
75.
Morgan, R. M. & Bull, P. A. The philosophy, nature and practice of forensic sediment analysis. Progress in Physical Geography 31, 43–58 (2007).
76.
Newell, A. J. et al. Automated Texture Recognition of Quartz Sand Grains for Forensic Applications*. Journal of Forensic Sciences 57, 1285–1289 (2012).
77.
Inspecting Detectives, The Long Shadow of the World’s End.
78.
Green, N. Get ready for CSI: Soil. (2011).
79.
1969 FBI Soil Exam Video. (8AD).
80.
The Soil Sleuth. (21AD).
81.
Zala, Krista. Dirty Science: Soil Forensics Digs into New Techniques. Science 318, 386–387.
82.
Bull, P. A., Morgan, R. M. & Freudiger-Bonzon, J. A critique of the present use of some geochemical techniques in geoforensic analysis. Forensic Science International 178, e35–e40 (2008).
83.
Ritz, K., Dawson, L. & Miller, D. Criminal and environmental soil forensics. (Springer, 2009).
84.
Pye, K., Blott, S. J., Croft, D. J. & Carter, J. F. Forensic comparison of soil samples: Assessment of small-scale spatial variability in elemental composition, carbon and nitrogen isotope ratios, colour, and particle size distribution. Forensic Science International 163, 59–80 (2006).
85.
Rawlins, B. G. & Cave, M. Investigating multi-element soil geochemical signatures and their potential for use in forensic studies. 232, 197–206 (2004).
86.
McCulloch, G., Dawson, L. A., Brewer, M. J. & Morgan, R. M. The identification of markers for Geoforensic HPLC profiling at close proximity sites. Forensic Science International 272, 127–141 (2017).
87.
Cheshire, K., Morgan, R. M. & Holmes, J. The potential for geochemical discrimination of single- and mixed-source soil samples from close proximity urban parkland locations. Australian Journal of Forensic Sciences 49, 161–174 (2017).
88.
Bell, S. Forensic chemistry. (Pearson Prentice Hall, 2006).
89.
Saferstein, R. Criminalistics: an introduction to forensic science. (Pearson, 2015).
90.
Saferstein, R. Criminalistics: an introduction to forensic science. (Pearson, 2015).
91.
Muccio, Z. & Jackson, G. P. Isotope ratio mass spectrometry. The Analyst 134, 213–222 (2009).
92.
Pye, K. & Croft, D. Forensic analysis of soil and sediment traces by scanning electron microscopy and energy-dispersive X-ray analysis: An experimental investigation. Forensic Science International 165, 52–63 (2007).
93.
Croft, D. J. & Pye, K. The potential use of continuous-flow isotope-ratio mass spectrometry as a tool in forensic soil analysis: a preliminary report. Rapid Communications in Mass Spectrometry 17, 2581–2584 (2003).
94.
Reidy, L., Bu, K., Godfrey, M. & Cizdziel, J. V. Elemental fingerprinting of soils using ICP-MS and multivariate statistics: A study for and by forensic chemistry majors. Forensic Science International 233, 37–44 (2013).
95.
Quaak, F. C. A. & Kuiper, I. Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons. Forensic Science International 210, 96–101 (2011).
96.
Young, J. M., Weyrich, L. S. & Cooper, A. Forensic soil DNA analysis using high-throughput sequencing: A comparison of four molecular markers. Forensic Science International: Genetics 13, 176–184 (2014).
97.
Amendt, J. et al. Best practice in forensic entomology—standards and guidelines. International Journal of Legal Medicine 121, 90–104 (2007).
98.
Amendt, J., Richards, C. S., Campobasso, C. P., Zehner, R. & Hall, M. J. R. Forensic entomology: applications and limitations. Forensic Science, Medicine, and Pathology 7, 379–392 (2011).
99.
Forensic Ecology Handbook. (John Wiley & Sons, Ltd, 2012). doi:10.1002/9781118374016.
100.
Bugelli, V. et al. Forensic Entomology and the Estimation of the Minimum Time Since Death in Indoor Cases. Journal of Forensic Sciences 60, 525–531 (2015).
101.
Catts, E. P. & Goff, M. L. Forensic Entomology in Criminal Investigations. Annual Review of Entomology 37, 253–272 (1992).
102.
Bernard Greenberg. Flies as Forensic Indicators. Journal of Medical Entomology 28, 565–577 (1991).
103.
Forensic Science Progress 5. vol. 5 (Springer Berlin Heidelberg, 1991).
104.
Catching History’s Criminals: The Forensics Story.
105.
Abdulla, S. The buzzing detective. news@nature (1999) doi:10.1038/news990923-2.
106.
From Eggs to Maggots.
107.
Forensic entomology - The crime scene (Wellcome Collection). (5AD).
108.
Cameron, N. G. The use of diatom analysis in forensic geoscience. 232, 277–280 (2004).
109.
Peabody, A. J. & Cameron, N. G. Forensic science and diatoms. in The Diatoms (eds. Smol, J. P. & Stoermer, E. F.) 534–539 (Cambridge University Press, 2010). doi:10.1017/CBO9780511763175.030.
110.
Scott, K. R., Morgan, R. M., Jones, V. J. & Cameron, N. G. The transferability of diatoms to clothing and the methods appropriate for their collection and analysis in forensic geoscience. Forensic Science International 241, 127–137 (2014).
111.
Cox, E. J. Diatoms and Forensic Science. in Forensic Ecology Handbook (eds. Márquez-Grant, N. & Roberts, J.) 141–151 (John Wiley & Sons, Ltd, 2012). doi:10.1002/9781118374016.ch9.
112.
Piette, M. H. A. & De Letter, E. A. Drowning: Still a difficult autopsy diagnosis. Forensic Science International 163, 1–9 (2006).
113.
Pollanen, M. S. Diatoms and homicide. Forensic Science International 91, 29–34 (1998).
114.
Siver, P. A., Lord, W. D. & McCarthy, D. J. Forensic Limnology: The Use of Freshwater Algal Community Ecology to Link Suspects to an Aquatic Crime Scene in Southern New England. 39, 847–853 (1994).
115.
Zimmerman, K. A. & Wallace, J. R. The Potential to Determine a Postmortem Submersion Interval Based on AlgalDiatom Diversity on Decomposing Mammalian Carcasses in Brackish Ponds in Delaware. Journal of Forensic Sciences 53, 935–941 (2008).
116.
Crime Scene Creatures - Diatom Detective (PBS).
117.
Forensic Files Historic Cases Reel Danger. (13AD).
118.
Brock, J. H. & Norris, D. O. Forensic botany: an under-utilized resource. 42, 364–367 (1997).
119.
Horrocks, M. & Walsh, K. A. J. Forensic palynology: assessing the value of the evidence. Review of Palaeobotany and Palynology 103, 69–74 (1998).
120.
Mildenhall, D. C., Wiltshire, P. E. J. & Bryant, V. M. Forensic palynology: Why do it and how it works. Forensic Science International 163, 163–172 (2006).
121.
Brown, A. G. The use of forensic botany and geology in war crimes investigations in NE Bosnia. Forensic Science International 163, 204–210 (2006).
122.
Hawksworth, D. L. & Wiltshire, P. E. J. Forensic mycology: the use of fungi in criminal investigations. Forensic Science International 206, 1–11 (2011).
123.
Mildenhall, D. C. Hypericum pollen determines the presence of burglars at the scene of a crime: An example of forensic palynology. Forensic Science International 163, 231–235 (2006).
124.
Wiltshire, P. E. J. Consideration of some taphonomic variables of relevance to forensic palynological investigation in the United Kingdom. Forensic Science International 163, 173–182 (2006).
125.
Plant detectives: How brambles can help solve murder cases - Dr Mark Spencer.
126.
Crime Scene Creatures - Counting Rings to Catch a Murderer (PBS).
127.
Jonathan Drori: Every pollen grain has a story. (8AD).
128.
Márquez-Grant, N. & Roberts, J. Forensic ecology handbook: from crime scene to court. (Wiley-Blackwell, 2012).
129.
Micropalaeontological Society. The archaeological and forensic applications of microfossils: a deeper understanding of human history. (Published for the Micropalaeontological Society by the Geological Society, 2017).
130.
Missing Persons. (Routledge, 2016). doi:10.4324/9781315595603.
131.
Cox, M. The scientific investigation of mass graves: towards protocols and standard operating procedures. (Cambridge University Press, 2008).
132.
Brown, Antony G. The combined use of pollen and soil analyses in a search and subsequent murder investigation. Journal of Forensic Sciences 47, 614–618.
133.
Bryant, V. M. & Jones, G. D. Forensic palynology: Current status of a rarely used technique in the United States of America. Forensic Science International 163, 183–197 (2006).
134.
Bryant, V. M., Jones, J. G. & Mildenhall, D. C. Forensic palynology in the United States of America. Palynology 14, 193–208 (1990).
135.
Horrocks, Mark. Forensic palynology: Variation in the pollen content of soil surface samples. Journal of Forensic Sciences 43,.
136.
Horrocks, Mark. Fine resolution of pollen patterns in limited space: Differentiating a crime scene and alibi scene seven meters apart. Journal of Forensic Sciences 44, 417–420.
137.
Jantunen, J. & Saarinen, K. Pollen transport by clothes. Aerobiologia 27, 339–343 (2011).
138.
Mildenhall, D. C. Forensic palynology in New Zealand. Review of Palaeobotany and Palynology 64, 227–234 (1990).
139.
Pye, K., Croft, D. J., & Geological Society of London. Forensic geoscience: principles, techniques and applications. vol. 232 (Geological Society, 2004).
140.
Riding, Jb. Changes in soil pollen assemblages on footwear worn at different sites. Palynology 31, 135–151.
141.
Ruffell, A. Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics. Forensic Science International 202, 9–12 (2010).
142.
Ruffell, A. & Wiltshire, P. Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis. Forensic Science International 145, 13–23 (2004).
143.
Wiltshire, P. E. J. Consideration of some taphonomic variables of relevance to forensic palynological investigation in the United Kingdom. Forensic Science International 163, 173–182 (2006).
144.
Wiltshire, P. E. J. & Black, S. The cribriform approach to the retrieval of palynological evidence from the turbinates of murder victims. Forensic Science International 163, 224–230 (2006).
145.
Zavada, M. S., McGraw, S. M. & Miller, M. A. The role of clothing fabrics as passive pollen collectors in the north‐eastern United States. Grana 46, 285–291 (2007).
146.
Hawksworth, D. L. & Wiltshire, P. E. J. Forensic mycology: the use of fungi in criminal investigations. Forensic Science International 206, 1–11 (2011).
147.
Etienne, D. & Jouffroy-Bapicot, I. Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Vegetation History and Archaeobotany 23, 743–749 (2014).
148.
Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen analysis. (Blackwell Scientific Publications, 1991).
149.
Nakagawa, T. Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27, 15–24.
150.
Ruffell, A. & McKinley, J. Geoforensics. (John Wiley & Sons, Ltd, 2008). doi:10.1002/9780470758854.
151.
Dent, B. B., Forbes, S. L. & Stuart, B. H. Review of human decomposition processes in soil. Environmental Geology 45, 576–585 (2004).
152.
Forbes, S. L., Stuart, B. H. & Dent, B. B. The identification of adipocere in grave soils. Forensic Science International 127, 225–230 (2002).
153.
Forbes, S. L., Stuart, B. H. & Dent, B. B. The effect of the burial environment on adipocere formation. Forensic Science International 154, 24–34 (2005).
154.
Forbes, S. L., Dent, B. B. & Stuart, B. H. The effect of soil type on adipocere formation. Forensic Science International 154, 35–43 (2005).
155.
Forensic Taphonomy. (CRC Press, 1996). doi:10.1201/9781439821923.
156.
Stover, E., Haglund, W. D. & Samuels, M. Exhumation of Mass Graves in Iraq. JAMA 290, (2003).
157.
Soil analysis in forensic taphonomy : chemical and biological effects of buried human remains. (CRC, 2008).
158.
The fascinating process of human decomposition. (2014).
159.
Waxing Historical: A Potted History of Adipocere. (12AD).
160.
Anderson, G. S. & Hobischak, N. R. Decomposition of carrion in the marine environment in British Columbia, Canada. International Journal of Legal Medicine 118, (2004).
161.
Delabarde, T., Keyser, C., Tracqui, A., Charabidze, D. & Ludes, B. The potential of forensic analysis on human bones found in riverine environment. Forensic Science International 228, e1–e5 (2013).
162.
Keiper, J. B. & Casamatta, D. A. Benthic organisms as forensic indicators. Journal of the North American Benthological Society 20, 311–324 (2001).
163.
Parker, R., Ruffell, A., Hughes, D. & Pringle, J. Geophysics and the search of freshwater bodies: A review. Science & Justice 50, 141–149 (2010).
164.
Dickson, G. C., Poulter, R. T. M., Maas, E. W., Probert, P. K. & Kieser, J. A. Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Science International 209, 1–10 (2011).
165.
Magni, P. A. et al. Evaluation of the floating time of a corpse found in a marine environment using the barnacle Lepas anatifera L. (Crustacea: Cirripedia: Pedunculata). Forensic Science International 247, e6–e10 (2015).
166.
Mateus, M., de Pablo, H. & Vaz, N. An investigation on body displacement after two drowning accidents. Forensic Science International 229, e6–e12 (2013).
167.
Merritt, R. W. & Wallace, J. R. The role of aquatic insects in forensic investigations. in Forensic entomology : the utility of arthropods in legal investigations (eds. Byrd, J. H. & Castner, J. L.) 271–320 (CRC Press, 2000).
168.
Ruffell, A. Under-water Scene Investigation Using Ground Penetrating Radar (GPR) in the Search for a Sunken Jet ski, Northern Ireland. Science & Justice 46, 221–230 (2006).
169.
Police Divers & Underwater Investigations.
170.
Underwater Forensics (Science Channel).
171.
Underwater Forensics Robot on Beyond Tomorrow.
172.
Flanagan, R. J. Cut Costs at All Costs! Forensic Science International 290, e26–e28 (2018).
173.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675 (2012).
174.
Cook, R., Evett, I. W., Jackson, G., Jones, P. J. & Lambert, J. A. A hierarchy of propositions: deciding which level to address in casework. Science & Justice 38, 231–239 (1998).
175.
White, P. Crime scene to court: the essentials of forensic science. (Royal Society of Chemistry, 2004).
176.
Reference and Research Book News. 16, (2001).
177.
Inman, K. & Rudin, N. The origin of evidence. Forensic Science International 126, 11–16 (2002).
178.
Evett, I. W., Berger, C. E. H., Buckleton, J. S., Champod, C. & Jackson, G. Finding the way forward for forensic science in the US—A commentary on the PCAST report. Forensic Science International 278, 16–23 (2017).
179.
Morgan, R. M., Wiltshire, P., Parker, A. & Bull, P. A. The role of forensic geoscience in wildlife crime detection. Forensic Science International 162, 152–162 (2006).
180.
Morgan, RM. Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model. (2017).
181.
Ruffell, A. & McKinley, J. Geoforensics. (John Wiley & Sons, Ltd, 2008). doi:10.1002/9780470758854.
182.
Bull, P. A., Morgan, R. M., Sagovsky, A. & Hughes, G. J. A. The Transfer and Persistence of Trace Particulates: Experimental studies using clothing fabrics. Science & Justice 46, 185–195 (2006).
183.
French, J. C., Morgan, R. M., Baxendell, P. & Bull, P. A. Multiple transfers of particulates and their dissemination within contact networks. Science & Justice 52, 33–41 (2012).
184.
Morgan, R. M., Davies, G., Balestri, F. & Bull, P. A. The recovery of pollen evidence from documents and its forensic implications. Science & Justice 53, 375–384 (2013).
185.
Morgan, RM. The forensic analysis of sediments recovered from footwear. in Criminal and Environmental Soil Forensics (Springer, 2009).
186.
Slot, A. et al. Tracers as invisible evidence — The transfer and persistence of flock fibres during a car exchange. Forensic Science International 275, 178–186 (2017).
187.
Analyzing fluorescence microscopy images with ImageJ.
188.
Kloster, Michael. Fragilariopsis kerguelensis images from sediment core PS1768-8, supplement to: Kloster, Michael; Kauer, Gerhard; Beszteri, Bánk (2014): SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects. BMC Bioinformatics, 15(1), 218. (PANGAEA - Data Publisher for Earth & Environmental Science, 2014). doi:b>10.1594/PANGAEA.833665.
189.
Kloster, Michael. Measurements of valves of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment core PS1768-8, supplement to: Kloster, Michael; Kauer, Gerhard; Esper, Oliver; Fuchs, Nike; Beszteri, Bánk (2018): Morphometry of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment: High-throughput measurements show second morphotype occurring during glacials. Marine Micropaleontology. https://ucl-new-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_datacite15843521&context=PC&vid=UCL_VU2&lang=en_US&search_scope=CSCOP_UCL&adaptor=primo_central_multiple_fe&tab=local&query=any,contains,Kloster,%20M.,%20Kauer,%20G.,%20Esper,%20O.,%20Fuchs,%20N.,%20&%20Beszteri,%20B.%20(2018).%20Morphometry%20of%20the%20diatom%20Fragilariopsis%20kerguelensis%20from%20Southern%20Ocean%20sediment:%20High-throughput%20measurements%20show%20second%20morphotype%20occurring%20during%20glacials.%20Marine%20Micropaleontology,%20143,%2070-79.&sortby=rank (2018) doi:b>10.1594/PANGAEA.892593.
190.
Levin, E. A., Morgan, R. M., Griffin, L. D. & Jones, V. J. A Comparison of Thresholding Methods for Forensic Reconstruction Studies Using Fluorescent Powder Proxies for Trace Materials. Journal of Forensic Sciences (2018) doi:10.1111/1556-4029.13938.
191.
Levin, E. A., Morgan, R. M., Griffin, L. D. & Jones, V. J. A Comparison of Thresholding Methods for Forensic Reconstruction Studies Using Fluorescent Powder Proxies for Trace Materials. Journal of Forensic Sciences (2018) doi:10.1111/1556-4029.13938.
192.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675 (2012).
193.
Schulze, K., Tillich, U. M., Dandekar, T. & Frohme, M. PlanktoVision – an automated analysis system for the identification of phytoplankton. BMC Bioinformatics 14, (2013).
194.
Cox, M. R. & Budhu, M. A practical approach to grain shape quantification. Engineering Geology 96, 1–16 (2008).
195.
Cox, M. R. & Budhu, M. A practical approach to grain shape quantification. Engineering Geology 96, 1–16 (2008).
196.
Igathinathane, C., Pordesimo, L. O., Columbus, E. P., Batchelor, W. D. & Sokhansanj, S. Sieveless particle size distribution analysis of particulate materials through computer vision. Computers and Electronics in Agriculture 66, 147–158 (2009).
197.
Mazzoli, A. & Favoni, O. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technology 225, 65–71 (2012).
198.
Mazzoli, A. & Moriconi, G. Particle size, size distribution and morphological evaluation of glass fiber reinforced plastic (GRP) industrial by-product. Micron 67, 169–178 (2014).