1.
Inman, K., Rudin, N.: The origin of evidence. Forensic Science International. 126, 11–16 (2002). https://doi.org/10.1016/S0379-0738(02)00031-2.
2.
Morgan, R.M., Wiltshire, P., Parker, A., Bull, P.A.: The role of forensic geoscience in wildlife crime detection. Forensic Science International. 162, 152–162 (2006). https://doi.org/10.1016/j.forsciint.2006.06.045.
3.
Morgan, R.M., Bull, P.A.: The philosophy, nature and practice of forensic sediment analysis. Progress in Physical Geography. 31, 43–58 (2007). https://doi.org/10.1177/0309133307073881.
4.
Ruffell, A., McKinley, J.: Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations. Earth-Science Reviews. 69, 235–247 (2005). https://doi.org/10.1016/j.earscirev.2004.08.002.
5.
Jonathan. J. Koehler, M.J.S.: The Individualization Fallacy in Forensic Science Evidence. 61, 199–219 (2008).
6.
Cole, S.A.: Forensic culture as epistemic culture: The sociology of forensic science. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 44, 36–46 (2013). https://doi.org/10.1016/j.shpsc.2012.09.003.
7.
Jasanoff, S.: Just Evidence: The Limits of Science in the Legal Process. The Journal of Law, Medicine  Ethics. 34, 328–341 (2006). https://doi.org/10.1111/j.1748-720X.2006.00038.x.
8.
Kiely, T.F.: Forensic evidence: science and the criminal law. CRC Press, Boca Raton, FL (2006).
9.
Kirk, P.L.: Crime investigation. John Wiley & Sons, New York (1974).
10.
Michael Lynch and Sheila Jasanoff: Introduction: Contested Identities: Science, Law and Forensic Practice. Social Studies of Science. 28, 675–686 (1998).
11.
Morgan, R.M., Bull, P.A.: Data Interpretation in Forensic Sediment and Soil Geochemistry. Environmental Forensics. 7, 325–334 (2006). https://doi.org/10.1080/15275920600996248.
12.
Rawlins, B.G., Kemp, S.J., Hodgkinson, E.H., Riding, J.B., Vane, C.H., Poulton, C., Freeborough, K.: Potential and Pitfalls in Establishing the Provenance of Earth-Related Samples in Forensic Investigations. Journal of Forensic Sciences. 51, 832–845 (2006). https://doi.org/10.1111/j.1556-4029.2006.00152.x.
13.
BBC Radio 4 - The Infinite Monkey Cage, Series 12, Forensic Science, http://www.bbc.co.uk/programmes/b064yglg.
14.
The Forensics Library, http://aboutforensics.co.uk/.
15.
BBC Radio 4 - Forensics in Crisis, http://www.bbc.co.uk/programmes/b05sv09g/broadcasts/2015/05.
16.
Hamzelou, J.: Hair analysis on trial after FBI admits to using flawed evidence. (2015).
17.
Drahl, C., Widener, A.: Forcing Change In Forensic Science. 92, 10–15 (2014).
18.
BBC Radio 4 - The Life Scientific, Niamh Nic Daeid, http://www.bbc.co.uk/programmes/b062k9zz.
19.
BBC Four - Catching History’s Criminals: The Forensics Story, http://www.bbc.co.uk/programmes/p02l4p5x.
20.
BBC Radio 4 - The Report, Forensic Science, http://www.bbc.co.uk/programmes/b01m68w2.
21.
Balding, D.J., Buckleton, J.: Interpreting low template DNA profiles. Forensic Science International: Genetics. 4, 1–10 (2009). https://doi.org/10.1016/j.fsigen.2009.03.003.
22.
Jasanoff, S.: Law’s Knowledge: Science for Justice in Legal Settings. American Journal of Public Health. 95, S49–S58 (2005). https://doi.org/10.2105/AJPH.2004.045732.
23.
Morgan, RM: The relevance of the evolution of experimental studies for the interpretation and evaluation of some trace physical evidence. Science & Justice. (2009).
24.
Thompson, W.C., Schumann, E.L.: Interpretation of statistical evidence in criminal trials: The prosecutor’s fallacy and the defense attorney’s fallacy. Law and Human Behavior. 11, 167–187 (1987). https://doi.org/10.1007/BF01044641.
25.
Morgan, R.M., Bull, P.A.: Forensic Geoscience and Crime detection: Identification, interpretation and presentation in forensic geoscience. 127, 73–90 (2007).
26.
Morgan, R.M., Cohen, J., McGookin, I., Murly-Gotto, J., O’Connor, R., Muress, S., Freudiger-Bonzon, J., Bull, P.A.: The relevance of the evolution of experimental studies for the interpretation and evaluation of some trace physical evidence. Science & Justice. 49, 277–285 (2009). https://doi.org/10.1016/j.scijus.2009.02.004.
27.
Morgan, R.M., Flynn, J., Sena, V., Bull, P.A.: Experimental forensic studies of the preservation of pollen in vehicle fires. Science & Justice. 54, 141–145 (2014). https://doi.org/10.1016/j.scijus.2013.04.001.
28.
Bull, P.A., Morgan, R.M., Sagovsky, A., Hughes, G.J.A.: The Transfer and Persistence of Trace Particulates: Experimental studies using clothing fabrics. Science & Justice. 46, 185–195 (2006). https://doi.org/10.1016/S1355-0306(06)71592-1.
29.
Chisum, W.J., Turvey, B.E.: Crime Reconstruction. Academic Press, Amsterdam (2011).
30.
Dachs, J., McNaught, I.J., Robertson, J.: The persistence of human scalp hair on clothing fabrics. Forensic Science International. 138, 27–36 (2003). https://doi.org/10.1016/j.forsciint.2003.07.014.
31.
Morgan, R.M., French, J.C., O’Donnell, L., Bull, P.A.: The reincorporation and redistribution of trace geoforensic particulates on clothing: An introductory study. Science & Justice. 50, 195–199 (2010). https://doi.org/10.1016/j.scijus.2010.04.002.
32.
Pounds, C.A., Smalldon, K.W.: The Transfer of Fibres between Clothing Materials During Simulated Contacts and their Persistence During Wear. Journal of the Forensic Science Society. 15, 29–37 (1975). https://doi.org/10.1016/S0015-7368(75)70933-7.
33.
Sugita, R., Marumo, Y.: Validity of color examination for forensic soil identification. Forensic Science International. 83, 201–210 (1996). https://doi.org/10.1016/S0379-0738(96)02038-5.
34.
Morgan, R.M., Flynn, J., Sena, V., Bull, P.A.: Experimental forensic studies of the preservation of pollen in vehicle fires. Science & Justice. 54, 141–145 (2014). https://doi.org/10.1016/j.scijus.2013.04.001.
35.
Morgan, RM: The spatial and temporal distribution of pollen in a room: forensic implications. (2014).
36.
The ‘CSI effect’. (2010).
37.
Solved- Trace Evidence, https://www.youtube.com/watch?v=AMmSCXzmxD4, (2008).
38.
Allen, T.J., Scranage, J.K.: The transfer of glass—part 1. Forensic Science International. 93, 167–174 (1998). https://doi.org/10.1016/S0379-0738(98)00041-3.
39.
Allen, T.J., Hoefler, K., Rose, S.: The transfer of glass—part 3. Forensic Science International. 93, 195–200 (1998). https://doi.org/10.1016/S0379-0738(98)00043-7.
40.
Schweitzer, N.J.: THE CSI EFFECT: POPULAR FICTION ABOUT FORENSIC SCIENCE AFFECTS THE PUBLIC’S EXPECTATIONS ABOUT REAL FORENSIC SCIENCE. Jurimetrics. 47, 357–364.
41.
Dachs, J., McNaught, I.J., Robertson, J.: The persistence of human scalp hair on clothing fabrics. Forensic Science International. 138, 27–36 (2003). https://doi.org/10.1016/j.forsciint.2003.07.014.
42.
French, J.C., Morgan, R.M., Baxendell, P., Bull, P.A.: Multiple transfers of particulates and their dissemination within contact networks. Science & Justice. 52, 33–41 (2012). https://doi.org/10.1016/j.scijus.2011.05.001.
43.
French, J: The secondary transfer of gunshot residue: an experimental investigation carried out with SEM-EDX analysis. X-RAY SPECTROMETRY. (2014).
44.
Grieve, M.C., Dunlop, J., Haddock, P.S.: Transfer experiments with acrylic fibres. Forensic Science International. 40, 267–277 (1989). https://doi.org/10.1016/0379-0738(89)90185-0.
45.
Grieve, M.C.: Glitter particles—an unusual source of trace evidence? Journal of the Forensic Science Society. 27, 405–412 (1987). https://doi.org/10.1016/S0015-7368(87)72789-3.
46.
Garrett, Brandon L.: Invalid forensic science testimony and wrongful convictions. Virginia Law Review. 95, 1–97.
47.
Pringle, J.K., Ruffell, A., Jervis, J.R., Donnelly, L., McKinley, J., Hansen, J., Morgan, R., Pirrie, D., Harrison, M.: The use of geoscience methods for terrestrial forensic searches. Earth-Science Reviews. 114, 108–123 (2012). https://doi.org/10.1016/j.earscirev.2012.05.006.
48.
Ruffell, A., McKinley, J.: Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations. Earth-Science Reviews. 69, 235–247 (2005). https://doi.org/10.1016/j.earscirev.2004.08.002.
49.
Ruffell, A., Pringle, J.K., Forbes, S.: Search protocols for hidden forensic objects beneath floors and within walls. Forensic Science International. 237, 137–145 (2014). https://doi.org/10.1016/j.forsciint.2013.12.036.
50.
Ruffell, A., McKinley, J.: Forensic geomorphology. Geomorphology. 206, 14–22 (2014). https://doi.org/10.1016/j.geomorph.2013.12.020.
51.
Bevan, B.W.: The search for graves. 56, 1310–1319 (1991).
52.
G. Clark Davenport: Remote Sensing Applications in Forensic Investigations. Historical Archaeology. 35, 87–100 (2001).
53.
Fenning, P.J., Donnelly, L.J.: Geophysical techniques for forensic investigation. 232, 11–20 (2004). https://doi.org/10.1144/GSL.SP.2004.232.01.03.
54.
Hansen, J.D., Pringle, J.K.: Comparison of magnetic, electrical and ground penetrating radar surveys to detect buried forensic objects in semi-urban and domestic patio environments. 384, 229–251 (2013). https://doi.org/10.1144/SP384.13.
55.
Scott, J., Hunter, J.R.: Environmental influences on resistivity mapping for the location of clandestine graves. 232, 33–38 (2004). https://doi.org/10.1144/GSL.SP.2004.232.01.05.
56.
Beck, Richard A.: Remote Sensing and GIS as Counterterrorism Tools in the Afghanistan War: A Case Study of the Zhawar Kili Region. The Professional Geographer. 55,. https://doi.org/10.1111/0033-0124.5502005.
57.
Pringle, J.K., Holland, C., Szkornik, K., Harrison, M.: Establishing forensic search methodologies and geophysical surveying for the detection of clandestine graves in coastal beach environments. Forensic Science International. 219, e29–e36 (2012). https://doi.org/10.1016/j.forsciint.2012.01.010.
58.
Morgan, R.M., Bull, P.A.: Data Interpretation in Forensic Sediment and Soil Geochemistry. Environmental Forensics. 7, 325–334 (2006). https://doi.org/10.1080/15275920600996248.
59.
Gepard GPR ground penetrating radar - Applications and functionality, https://www.youtube.com/watch?v=JQAeExJwjpE, (17)AD.
60.
SERIAL, https://serialpodcast.org/.
61.
Undisclosed, http://undisclosed-podcast.com/.
62.
The Murder Trial, https://learningonscreen.ac.uk/ondemand/index.php/prog/057FF632?bcast=98658101.
63.
Hanson, I.D.: The importance of stratigraphy in forensic investigation. Geological Society, London, Special Publications. 232, 39–47 (2004). https://doi.org/10.1144/GSL.SP.2004.232.01.06.
64.
Holzer, Thomas L.: Seismograms offer insight into Oklahoma City bombing. Eos. 77,.
65.
Koper, K.D., Wallace, T.C., Taylor, S.R., Hartse, H.E.: Forensic seismology and the sinking of the Kursk [\textit{Kursk}]. Eos, Transactions American Geophysical Union. 82, 37–37 (2001). https://doi.org/10.1029/01EO00023.
66.
Scott, J., Hunter, J.R.: Environmental influences on resistivity mapping for the location of clandestine graves. Geological Society, London, Special Publications. 232, 33–38 (2004). https://doi.org/10.1144/GSL.SP.2004.232.01.05.
67.
Bull, P.A., Parker, A., Morgan, R.M.: The forensic analysis of soils and sediment taken from the cast of a footprint. Forensic Science International. 162, 6–12 (2006). https://doi.org/10.1016/j.forsciint.2006.06.075.
68.
Bull, P.A., Morgan, R.M.: Sediment Fingerprints: A forensic technique using quartz sand grains. Science & Justice. 46, 107–124 (2006). https://doi.org/10.1016/S1355-0306(06)71581-7.
69.
Dawson, L.A., Hillier, S.: Measurement of soil characteristics for forensic applications. Surface and Interface Analysis. 42, 363–377 (2010). https://doi.org/10.1002/sia.3315.
70.
Morgan, R.M., Robertson, J., Lennard, C., Hubbard, K., Bull, P.A.: Quartz grain surface textures of soils and sediments from Canberra, Australia: A forensic reconstruction tool. Australian Journal of Forensic Sciences. 42, 169–179 (2010). https://doi.org/10.1080/00450610903258110.
71.
Bailey, M.J., Morgan, R.M., Comini, P., Calusi, S., Bull, P.A.: Evaluation of Particle-Induced X-ray Emission and Particle-Induced γ-ray Emission of Quartz Grains for Forensic Trace Sediment Analysis. Analytical Chemistry. 84, 2260–2267 (2012). https://doi.org/10.1021/ac2028722.
72.
Konopinski, D.I., Hudziak, S., Morgan, R.M., Bull, P.A., Kenyon, A.J.: Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis. Forensic Science International. 223, 245–255 (2012). https://doi.org/10.1016/j.forsciint.2012.09.011.
73.
Newell, A.J., Morgan, R.M., Griffin, L.D., Bull, P.A., Marshall, J.R., Graham, G.: Automated Texture Recognition of Quartz Sand Grains for Forensic Applications*. Journal of Forensic Sciences. 57, 1285–1289 (2012). https://doi.org/10.1111/j.1556-4029.2012.02126.x.
74.
Sugita, R., Marumo, Y.: Screening of soil evidence by a combination of simple techniques: validity of particle size distribution. Forensic Science International. 122, 155–158 (2001). https://doi.org/10.1016/S0379-0738(01)00490-X.
75.
Morgan, R.M., Bull, P.A.: The philosophy, nature and practice of forensic sediment analysis. Progress in Physical Geography. 31, 43–58 (2007). https://doi.org/10.1177/0309133307073881.
76.
Newell, A.J., Morgan, R.M., Griffin, L.D., Bull, P.A., Marshall, J.R., Graham, G.: Automated Texture Recognition of Quartz Sand Grains for Forensic Applications*. Journal of Forensic Sciences. 57, 1285–1289 (2012). https://doi.org/10.1111/j.1556-4029.2012.02126.x.
77.
Inspecting Detectives, The Long Shadow of the World’s End, http://www.bbc.co.uk/programmes/b06cy69y.
78.
Green, N.: Get ready for CSI: Soil. (2011).
79.
1969 FBI Soil Exam Video, https://www.youtube.com/watch?v=1Op0-A752IY, (8)AD.
80.
The Soil Sleuth, https://www.youtube.com/watch?v=NyurHTD2Kro, (21)AD.
81.
Zala, Krista: Dirty Science: Soil Forensics Digs into New Techniques. Science. 318, 386–387.
82.
Bull, P.A., Morgan, R.M., Freudiger-Bonzon, J.: A critique of the present use of some geochemical techniques in geoforensic analysis. Forensic Science International. 178, e35–e40 (2008). https://doi.org/10.1016/j.forsciint.2007.09.003.
83.
Ritz, K., Dawson, L., Miller, D.: Criminal and environmental soil forensics. Springer, [Dordrecht?] (2009).
84.
Pye, K., Blott, S.J., Croft, D.J., Carter, J.F.: Forensic comparison of soil samples: Assessment of small-scale spatial variability in elemental composition, carbon and nitrogen isotope ratios, colour, and particle size distribution. Forensic Science International. 163, 59–80 (2006). https://doi.org/10.1016/j.forsciint.2005.11.008.
85.
Rawlins, B.G., Cave, M.: Investigating multi-element soil geochemical signatures and their potential for use in forensic studies. 232, 197–206 (2004). https://doi.org/10.1144/GSL.SP.2004.232.01.18.
86.
McCulloch, G., Dawson, L.A., Brewer, M.J., Morgan, R.M.: The identification of markers for Geoforensic HPLC profiling at close proximity sites. Forensic Science International. 272, 127–141 (2017). https://doi.org/10.1016/j.forsciint.2017.01.009.
87.
Cheshire, K., Morgan, R.M., Holmes, J.: The potential for geochemical discrimination of single- and mixed-source soil samples from close proximity urban parkland locations. Australian Journal of Forensic Sciences. 49, 161–174 (2017). https://doi.org/10.1080/00450618.2016.1144789.
88.
Bell, S.: Forensic chemistry. Pearson Prentice Hall, Upper Saddle River, N.J. (2006).
89.
Saferstein, R.: Criminalistics: an introduction to forensic science. Pearson, Boston (2015).
90.
Saferstein, R.: Criminalistics: an introduction to forensic science. Pearson, Boston (2015).
91.
Muccio, Z., Jackson, G.P.: Isotope ratio mass spectrometry. The Analyst. 134, 213–222 (2009). https://doi.org/10.1039/B808232D.
92.
Pye, K., Croft, D.: Forensic analysis of soil and sediment traces by scanning electron microscopy and energy-dispersive X-ray analysis: An experimental investigation. Forensic Science International. 165, 52–63 (2007). https://doi.org/10.1016/j.forsciint.2006.03.001.
93.
Croft, D.J., Pye, K.: The potential use of continuous-flow isotope-ratio mass spectrometry as a tool in forensic soil analysis: a preliminary report. Rapid Communications in Mass Spectrometry. 17, 2581–2584 (2003). https://doi.org/10.1002/rcm.1174.
94.
Reidy, L., Bu, K., Godfrey, M., Cizdziel, J.V.: Elemental fingerprinting of soils using ICP-MS and multivariate statistics: A study for and by forensic chemistry majors. Forensic Science International. 233, 37–44 (2013). https://doi.org/10.1016/j.forsciint.2013.08.019.
95.
Quaak, F.C.A., Kuiper, I.: Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons. Forensic Science International. 210, 96–101 (2011). https://doi.org/10.1016/j.forsciint.2011.02.005.
96.
Young, J.M., Weyrich, L.S., Cooper, A.: Forensic soil DNA analysis using high-throughput sequencing: A comparison of four molecular markers. Forensic Science International: Genetics. 13, 176–184 (2014). https://doi.org/10.1016/j.fsigen.2014.07.014.
97.
Amendt, J., Campobasso, C.P., Gaudry, E., Reiter, C., LeBlanc, H.N., J. R. Hall, M.: Best practice in forensic entomology—standards and guidelines. International Journal of Legal Medicine. 121, 90–104 (2007). https://doi.org/10.1007/s00414-006-0086-x.
98.
Amendt, J., Richards, C.S., Campobasso, C.P., Zehner, R., Hall, M.J.R.: Forensic entomology: applications and limitations. Forensic Science, Medicine, and Pathology. 7, 379–392 (2011). https://doi.org/10.1007/s12024-010-9209-2.
99.
Márquez-Grant, N., Roberts, J. eds: Forensic Ecology Handbook. John Wiley & Sons, Ltd, Chichester, UK (2012). https://doi.org/10.1002/9781118374016.
100.
Bugelli, V., Forni, D., Bassi, L.A., Di Paolo, M., Marra, D., Lenzi, S., Toni, C., Giusiani, M., Domenici, R., Gherardi, M., Vanin, S.: Forensic Entomology and the Estimation of the Minimum Time Since Death in Indoor Cases. Journal of Forensic Sciences. 60, 525–531 (2015). https://doi.org/10.1111/1556-4029.12647.
101.
Catts, E.P., Goff, M.L.: Forensic Entomology in Criminal Investigations. Annual Review of Entomology. 37, 253–272 (1992). https://doi.org/10.1146/annurev.en.37.010192.001345.
102.
Bernard Greenberg: Flies as Forensic Indicators. Journal of Medical Entomology. 28, 565–577 (1991).
103.
Maehly, A., Williams, R.L. eds: Forensic Science Progress 5. Springer Berlin Heidelberg, Berlin, Heidelberg (1991). https://doi.org/10.1007/978-3-642-58233-2.
104.
Catching History’s Criminals: The Forensics Story, http://www.bbc.co.uk/programmes/p02tydb7.
105.
Abdulla, S.: The buzzing detective. news@nature. (1999). https://doi.org/10.1038/news990923-2.
106.
From Eggs to Maggots, http://www.pbs.org/wnet/nature/crime-scene-creatures-video-from-eggs-to-maggots/5209/.
107.
Forensic entomology - The crime scene (Wellcome Collection), https://www.youtube.com/watch?v=HIVKISCmjTQ, (5)AD.
108.
Cameron, N.G.: The use of diatom analysis in forensic geoscience. 232, 277–280 (2004). https://doi.org/10.1144/GSL.SP.2004.232.01.25.
109.
Peabody, A.J., Cameron, N.G.: Forensic science and diatoms. In: Smol, J.P. and Stoermer, E.F. (eds.) The Diatoms. pp. 534–539. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511763175.030.
110.
Scott, K.R., Morgan, R.M., Jones, V.J., Cameron, N.G.: The transferability of diatoms to clothing and the methods appropriate for their collection and analysis in forensic geoscience. Forensic Science International. 241, 127–137 (2014). https://doi.org/10.1016/j.forsciint.2014.05.011.
111.
Cox, E.J.: Diatoms and Forensic Science. In: Márquez-Grant, N. and Roberts, J. (eds.) Forensic Ecology Handbook. pp. 141–151. John Wiley & Sons, Ltd, Chichester, UK (2012). https://doi.org/10.1002/9781118374016.ch9.
112.
Piette, M.H.A., De Letter, E.A.: Drowning: Still a difficult autopsy diagnosis. Forensic Science International. 163, 1–9 (2006). https://doi.org/10.1016/j.forsciint.2004.10.027.
113.
Pollanen, M.S.: Diatoms and homicide. Forensic Science International. 91, 29–34 (1998). https://doi.org/10.1016/S0379-0738(97)00162-X.
114.
Siver, P.A., Lord, W.D., McCarthy, D.J.: Forensic Limnology: The Use of Freshwater Algal Community Ecology to Link Suspects to an Aquatic Crime Scene in Southern New England. 39, 847–853 (1994).
115.
Zimmerman, K.A., Wallace, J.R.: The Potential to Determine a Postmortem Submersion Interval Based on AlgalDiatom Diversity on Decomposing Mammalian Carcasses in Brackish Ponds in Delaware. Journal of Forensic Sciences. 53, 935–941 (2008). https://doi.org/10.1111/j.1556-4029.2008.00748.x.
116.
Crime Scene Creatures - Diatom Detective (PBS), http://www.pbs.org/wnet/nature/crime-scene-creatures-video-diatom-detective/5208/.
117.
Forensic Files Historic Cases Reel Danger, https://www.youtube.com/watch?v=cXcYpd1iacM, (13)AD.
118.
Brock, J.H., Norris, D.O.: Forensic botany: an under-utilized resource. 42, 364–367 (1997).
119.
Horrocks, M., Walsh, K.A.J.: Forensic palynology: assessing the value of the evidence. Review of Palaeobotany and Palynology. 103, 69–74 (1998). https://doi.org/10.1016/S0034-6667(98)00027-X.
120.
Mildenhall, D.C., Wiltshire, P.E.J., Bryant, V.M.: Forensic palynology: Why do it and how it works. Forensic Science International. 163, 163–172 (2006). https://doi.org/10.1016/j.forsciint.2006.07.012.
121.
Brown, A.G.: The use of forensic botany and geology in war crimes investigations in NE Bosnia. Forensic Science International. 163, 204–210 (2006). https://doi.org/10.1016/j.forsciint.2006.05.025.
122.
Hawksworth, D.L., Wiltshire, P.E.J.: Forensic mycology: the use of fungi in criminal investigations. Forensic Science International. 206, 1–11 (2011). https://doi.org/10.1016/j.forsciint.2010.06.012.
123.
Mildenhall, D.C.: Hypericum pollen determines the presence of burglars at the scene of a crime: An example of forensic palynology. Forensic Science International. 163, 231–235 (2006). https://doi.org/10.1016/j.forsciint.2005.11.028.
124.
Wiltshire, P.E.J.: Consideration of some taphonomic variables of relevance to forensic palynological investigation in the United Kingdom. Forensic Science International. 163, 173–182 (2006). https://doi.org/10.1016/j.forsciint.2006.07.011.
125.
Plant detectives: How brambles can help solve murder cases -  Dr Mark Spencer, http://www.bbc.co.uk/programmes/articles/5q2xGXDZv0S7hg3KQl11vNg/plant-detectives-how-bramble-and-co-can-help-solve-crimes.
126.
Crime Scene Creatures - Counting Rings to Catch a Murderer (PBS), http://www.pbs.org/wnet/nature/crime-scene-creatures-video-counting-rings-to-catch-a-murderer/5207/.
127.
Jonathan Drori: Every pollen grain has a story, https://www.youtube.com/watch?v=vXDJ-nAykKE&feature=youtu.be, (8)AD.
128.
Márquez-Grant, N., Roberts, J.: Forensic ecology handbook: from crime scene to court. Wiley-Blackwell, Chichester (2012).
129.
Micropalaeontological Society: The archaeological and forensic applications of microfossils: a deeper understanding of human history. Published for the Micropalaeontological Society by the Geological Society, London (2017).
130.
Missing Persons. Routledge (2016). https://doi.org/10.4324/9781315595603.
131.
Cox, M.: The scientific investigation of mass graves: towards protocols and standard operating procedures. Cambridge University Press, New York (2008).
132.
Brown, Antony G.: The combined use of pollen and soil analyses in a search and subsequent murder investigation. Journal of Forensic Sciences. 47, 614–618.
133.
Bryant, V.M., Jones, G.D.: Forensic palynology: Current status of a rarely used technique in the United States of America. Forensic Science International. 163, 183–197 (2006). https://doi.org/10.1016/j.forsciint.2005.11.021.
134.
Bryant, V.M., Jones, J.G., Mildenhall, D.C.: Forensic palynology in the United States of America. Palynology. 14, 193–208 (1990). https://doi.org/10.1080/01916122.1990.9989380.
135.
Horrocks, Mark: Forensic palynology: Variation in the pollen content of soil surface samples. Journal of Forensic Sciences. 43,.
136.
Horrocks, Mark: Fine resolution of pollen patterns in limited space: Differentiating a crime scene and alibi scene seven meters apart. Journal of Forensic Sciences. 44, 417–420.
137.
Jantunen, J., Saarinen, K.: Pollen transport by clothes. Aerobiologia. 27, 339–343 (2011). https://doi.org/10.1007/s10453-011-9200-8.
138.
Mildenhall, D.C.: Forensic palynology in New Zealand. Review of Palaeobotany and Palynology. 64, 227–234 (1990). https://doi.org/10.1016/0034-6667(90)90137-8.
139.
Pye, K., Croft, D.J., Geological Society of London: Forensic geoscience: principles, techniques and applications. Geological Society, London (2004).
140.
Riding, Jb: Changes in soil pollen assemblages on footwear worn at different sites. Palynology. 31, 135–151.
141.
Ruffell, A.: Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics. Forensic Science International. 202, 9–12 (2010). https://doi.org/10.1016/j.forsciint.2010.03.044.
142.
Ruffell, A., Wiltshire, P.: Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis. Forensic Science International. 145, 13–23 (2004). https://doi.org/10.1016/j.forsciint.2004.03.017.
143.
Wiltshire, P.E.J.: Consideration of some taphonomic variables of relevance to forensic palynological investigation in the United Kingdom. Forensic Science International. 163, 173–182 (2006). https://doi.org/10.1016/j.forsciint.2006.07.011.
144.
Wiltshire, P.E.J., Black, S.: The cribriform approach to the retrieval of palynological evidence from the turbinates of murder victims. Forensic Science International. 163, 224–230 (2006). https://doi.org/10.1016/j.forsciint.2005.11.019.
145.
Zavada, M.S., McGraw, S.M., Miller, M.A.: The role of clothing fabrics as passive pollen collectors in the north‐eastern United States. Grana. 46, 285–291 (2007). https://doi.org/10.1080/00173130701780104.
146.
Hawksworth, D.L., Wiltshire, P.E.J.: Forensic mycology: the use of fungi in criminal investigations. Forensic Science International. 206, 1–11 (2011). https://doi.org/10.1016/j.forsciint.2010.06.012.
147.
Etienne, D., Jouffroy-Bapicot, I.: Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Vegetation History and Archaeobotany. 23, 743–749 (2014). https://doi.org/10.1007/s00334-014-0439-1.
148.
Moore, P.D., Webb, J.A., Collinson, M.E.: Pollen analysis. Blackwell Scientific Publications, Oxford (1991).
149.
Nakagawa, T: Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas. 27, 15–24.
150.
Ruffell, A., McKinley, J.: Geoforensics. John Wiley & Sons, Ltd, Chichester, UK (2008). https://doi.org/10.1002/9780470758854.
151.
Dent, B.B., Forbes, S.L., Stuart, B.H.: Review of human decomposition processes in soil. Environmental Geology. 45, 576–585 (2004). https://doi.org/10.1007/s00254-003-0913-z.
152.
Forbes, S.L., Stuart, B.H., Dent, B.B.: The identification of adipocere in grave soils. Forensic Science International. 127, 225–230 (2002). https://doi.org/10.1016/S0379-0738(02)00127-5.
153.
Forbes, S.L., Stuart, B.H., Dent, B.B.: The effect of the burial environment on adipocere formation. Forensic Science International. 154, 24–34 (2005). https://doi.org/10.1016/j.forsciint.2004.09.107.
154.
Forbes, S.L., Dent, B.B., Stuart, B.H.: The effect of soil type on adipocere formation. Forensic Science International. 154, 35–43 (2005). https://doi.org/10.1016/j.forsciint.2004.09.108.
155.
Haglund, W., Sorg, M. eds: Forensic Taphonomy. CRC Press (1996). https://doi.org/10.1201/9781439821923.
156.
Stover, E., Haglund, W.D., Samuels, M.: Exhumation of Mass Graves in Iraq. JAMA. 290, (2003). https://doi.org/10.1001/jama.290.5.663.
157.
Tibbett, M., Carter, D.O. eds: Soil analysis in forensic taphonomy : chemical and biological effects of buried human remains. CRC, Boca Raton, Florida (2008).
158.
The fascinating process of human decomposition, https://www.youtube.com/watch?v=OFJrow7yaec&feature=youtu.be, (2014).
159.
Waxing Historical: A Potted History of Adipocere, https://www.youtube.com/watch?v=apLz4uT6jWY&feature=youtu.be, (12)AD.
160.
Anderson, G.S., Hobischak, N.R.: Decomposition of carrion in the marine environment in British Columbia, Canada. International Journal of Legal Medicine. 118, (2004). https://doi.org/10.1007/s00414-004-0447-2.
161.
Delabarde, T., Keyser, C., Tracqui, A., Charabidze, D., Ludes, B.: The potential of forensic analysis on human bones found in riverine environment. Forensic Science International. 228, e1–e5 (2013). https://doi.org/10.1016/j.forsciint.2013.03.019.
162.
Keiper, J.B., Casamatta, D.A.: Benthic organisms as forensic indicators. Journal of the North American Benthological Society. 20, 311–324 (2001). https://doi.org/10.2307/1468325.
163.
Parker, R., Ruffell, A., Hughes, D., Pringle, J.: Geophysics and the search of freshwater bodies: A review. Science & Justice. 50, 141–149 (2010). https://doi.org/10.1016/j.scijus.2009.09.001.
164.
Dickson, G.C., Poulter, R.T.M., Maas, E.W., Probert, P.K., Kieser, J.A.: Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Science International. 209, 1–10 (2011). https://doi.org/10.1016/j.forsciint.2010.10.016.
165.
Magni, P.A., Venn, C., Aquila, I., Pepe, F., Ricci, P., Di Nunzio, C., Ausania, F., Dadour, I.R.: Evaluation of the floating time of a corpse found in a marine environment using the barnacle Lepas anatifera L. (Crustacea: Cirripedia: Pedunculata). Forensic Science International. 247, e6–e10 (2015). https://doi.org/10.1016/j.forsciint.2014.11.016.
166.
Mateus, M., de Pablo, H., Vaz, N.: An investigation on body displacement after two drowning accidents. Forensic Science International. 229, e6–e12 (2013). https://doi.org/10.1016/j.forsciint.2013.03.010.
167.
Merritt, R.W., Wallace, J.R.: The role of aquatic insects in forensic investigations. In: Byrd, J.H. and Castner, J.L. (eds.) Forensic entomology : the utility of arthropods in legal investigations. pp. 271–320. CRC Press, Boca Raton (2000).
168.
Ruffell, A.: Under-water Scene Investigation Using Ground Penetrating Radar (GPR) in the Search for a Sunken Jet ski, Northern Ireland. Science & Justice. 46, 221–230 (2006). https://doi.org/10.1016/S1355-0306(06)71602-1.
169.
Police Divers & Underwater Investigations.
170.
Underwater Forensics (Science Channel), http://www.sciencechannel.com/tv-shows/science-channel-presents/videos/discoveries-this-week-underwater-forensics/.
171.
Underwater Forensics Robot on Beyond Tomorrow, http://www.dailymotion.com/video/x2xj6jp.
172.
Flanagan, R.J.: Cut Costs at All Costs! Forensic Science International. 290, e26–e28 (2018). https://doi.org/10.1016/j.forsciint.2018.06.038.
173.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089.
174.
Cook, R., Evett, I.W., Jackson, G., Jones, P.J., Lambert, J.A.: A hierarchy of propositions: deciding which level to address in casework. Science & Justice. 38, 231–239 (1998). https://doi.org/10.1016/S1355-0306(98)72117-3.
175.
White, P.: Crime scene to court: the essentials of forensic science. Royal Society of Chemistry, Cambridge, UK (2004).
176.
Reference and Research Book News. 16, (2001).
177.
Inman, K., Rudin, N.: The origin of evidence. Forensic Science International. 126, 11–16 (2002). https://doi.org/10.1016/S0379-0738(02)00031-2.
178.
Evett, I.W., Berger, C.E.H., Buckleton, J.S., Champod, C., Jackson, G.: Finding the way forward for forensic science in the US—A commentary on the PCAST report. Forensic Science International. 278, 16–23 (2017). https://doi.org/10.1016/j.forsciint.2017.06.018.
179.
Morgan, R.M., Wiltshire, P., Parker, A., Bull, P.A.: The role of forensic geoscience in wildlife crime detection. Forensic Science International. 162, 152–162 (2006). https://doi.org/10.1016/j.forsciint.2006.06.045.
180.
Morgan, RM: Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model. (2017).
181.
Ruffell, A., McKinley, J.: Geoforensics. John Wiley & Sons, Ltd, Chichester, UK (2008). https://doi.org/10.1002/9780470758854.
182.
Bull, P.A., Morgan, R.M., Sagovsky, A., Hughes, G.J.A.: The Transfer and Persistence of Trace Particulates: Experimental studies using clothing fabrics. Science & Justice. 46, 185–195 (2006). https://doi.org/10.1016/S1355-0306(06)71592-1.
183.
French, J.C., Morgan, R.M., Baxendell, P., Bull, P.A.: Multiple transfers of particulates and their dissemination within contact networks. Science & Justice. 52, 33–41 (2012). https://doi.org/10.1016/j.scijus.2011.05.001.
184.
Morgan, R.M., Davies, G., Balestri, F., Bull, P.A.: The recovery of pollen evidence from documents and its forensic implications. Science & Justice. 53, 375–384 (2013). https://doi.org/10.1016/j.scijus.2013.03.004.
185.
Morgan, RM: The forensic analysis of sediments recovered from footwear. In: Criminal and Environmental Soil Forensics. Springer (2009).
186.
Slot, A., van der Weerd, J., Roos, M., Baiker, M., Stoel, R.D., Zuidberg, M.C.: Tracers as invisible evidence — The transfer and persistence of flock fibres during a car exchange. Forensic Science International. 275, 178–186 (2017). https://doi.org/10.1016/j.forsciint.2017.03.005.
187.
Analyzing fluorescence microscopy images with ImageJ, http://www.microscopist.co.uk/wp-content/uploads/2018/09/ImageJ_FL_Image_Analysis.pdf.
188.
Kloster, Michael: Fragilariopsis kerguelensis images from sediment core PS1768-8, supplement to: Kloster, Michael; Kauer, Gerhard; Beszteri, Bánk (2014): SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects. BMC Bioinformatics, 15(1), 218. PANGAEA - Data Publisher for Earth & Environmental Science (2014). https://doi.org/b>10.1594/PANGAEA.833665.
189.
Kloster, Michael: Measurements of valves of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment core PS1768-8, supplement to: Kloster, Michael; Kauer, Gerhard; Esper, Oliver; Fuchs, Nike; Beszteri, Bánk (2018): Morphometry of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment: High-throughput measurements show second morphotype occurring during glacials. Marine Micropaleontology, https://ucl-new-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_datacite15843521&context=PC&vid=UCL_VU2&lang=en_US&search_scope=CSCOP_UCL&adaptor=primo_central_multiple_fe&tab=local&query=any,contains,Kloster,%20M.,%20Kauer,%20G.,%20Esper,%20O.,%20Fuchs,%20N.,%20&%20Beszteri,%20B.%20(2018).%20Morphometry%20of%20the%20diatom%20Fragilariopsis%20kerguelensis%20from%20Southern%20Ocean%20sediment:%20High-throughput%20measurements%20show%20second%20morphotype%20occurring%20during%20glacials.%20Marine%20Micropaleontology,%20143,%2070-79.&sortby=rank. https://doi.org/b>10.1594/PANGAEA.892593.
190.
Levin, E.A., Morgan, R.M., Griffin, L.D., Jones, V.J.: A Comparison of Thresholding Methods for Forensic Reconstruction Studies Using Fluorescent Powder Proxies for Trace Materials. Journal of Forensic Sciences. (2018). https://doi.org/10.1111/1556-4029.13938.
191.
Levin, E.A., Morgan, R.M., Griffin, L.D., Jones, V.J.: A Comparison of Thresholding Methods for Forensic Reconstruction Studies Using Fluorescent Powder Proxies for Trace Materials. Journal of Forensic Sciences. (2018). https://doi.org/10.1111/1556-4029.13938.
192.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089.
193.
Schulze, K., Tillich, U.M., Dandekar, T., Frohme, M.: PlanktoVision – an automated analysis system for the identification of phytoplankton. BMC Bioinformatics. 14, (2013). https://doi.org/10.1186/1471-2105-14-115.
194.
Cox, M.R., Budhu, M.: A practical approach to grain shape quantification. Engineering Geology. 96, 1–16 (2008). https://doi.org/10.1016/j.enggeo.2007.05.005.
195.
Cox, M.R., Budhu, M.: A practical approach to grain shape quantification. Engineering Geology. 96, 1–16 (2008). https://doi.org/10.1016/j.enggeo.2007.05.005.
196.
Igathinathane, C., Pordesimo, L.O., Columbus, E.P., Batchelor, W.D., Sokhansanj, S.: Sieveless particle size distribution analysis of particulate materials through computer vision. Computers and Electronics in Agriculture. 66, 147–158 (2009). https://doi.org/10.1016/j.compag.2009.01.005.
197.
Mazzoli, A., Favoni, O.: Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technology. 225, 65–71 (2012). https://doi.org/10.1016/j.powtec.2012.03.033.
198.
Mazzoli, A., Moriconi, G.: Particle size, size distribution and morphological evaluation of glass fiber reinforced plastic (GRP) industrial by-product. Micron. 67, 169–178 (2014). https://doi.org/10.1016/j.micron.2014.07.007.