[1]
Andersson, J.L.R. et al. 2001. Modeling Geometric Deformations in EPI Time Series. NeuroImage. 13, 5 (May 2001), 903–919. DOI:https://doi.org/10.1006/nimg.2001.0746.
[2]
Ashburner, J. 2007. A fast diffeomorphic image registration algorithm. NeuroImage. 38, 1 (Oct. 2007), 95–113. DOI:https://doi.org/10.1016/j.neuroimage.2007.07.007.
[3]
Ashburner, J. 2009. Computational anatomy with the SPM software. Magnetic Resonance Imaging. 27, 8 (Oct. 2009), 1163–1174. DOI:https://doi.org/10.1016/j.mri.2009.01.006.
[4]
Ashburner, J. and Friston, K.J. 2009. Computing average shaped tissue probability templates. NeuroImage. 45, 2 (Apr. 2009), 333–341. DOI:https://doi.org/10.1016/j.neuroimage.2008.12.008.
[5]
Ashburner, J. and Friston, K.J. 2005. Unified segmentation. NeuroImage. 26, 3 (Jul. 2005), 839–851. DOI:https://doi.org/10.1016/j.neuroimage.2005.02.018.
[6]
Ashburner, J. and Friston, K.J. 2000. Voxel-Based Morphometry—The Methods. NeuroImage. 11, 6 (Jun. 2000), 805–821. DOI:https://doi.org/10.1006/nimg.2000.0582.
[7]
Ashburner, J. and Friston, K.J. 2000. Voxel-Based Morphometry—The Methods. NeuroImage. 11, 6 (Jun. 2000), 805–821. DOI:https://doi.org/10.1006/nimg.2000.0582.
[8]
Ashburner, J. and Klöppel, S. 2011. Multivariate models of inter-subject anatomical variability. NeuroImage. 56, 2 (May 2011), 422–439. DOI:https://doi.org/10.1016/j.neuroimage.2010.03.059.
[9]
Attwell, D. and Iadecola, C. 2002. The neural basis of functional brain imaging signals. Trends in Neurosciences. 25, 12 (Dec. 2002), 621–625. DOI:https://doi.org/10.1016/S0166-2236(02)02264-6.
[10]
Barnes, J. et al. 2008. A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. NeuroImage. 40, 4 (May 2008), 1655–1671. DOI:https://doi.org/10.1016/j.neuroimage.2008.01.012.
[11]
Buxton, R.B. 2002. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. Cambridge University Press.
[12]
Buxton, R.B. et al. 2004. Modeling the hemodynamic response to brain activation. NeuroImage. 23, (Jan. 2004), S220–S233. DOI:https://doi.org/10.1016/j.neuroimage.2004.07.013.
[13]
By:van Buchem, MA (van Buchem, MA); Tofts, PS (Tofts, PS) 2000. Magnetization transfer imaging. NEUROIMAGING CLINICS OF NORTH AMERICA    NEUROIMAGING CLINICS OF NORTH AMERICA. 10, 4 (2000).
[14]
Chupin, M. et al. 2007. Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer’s disease. NeuroImage. 34, 3 (Feb. 2007), 996–1019. DOI:https://doi.org/10.1016/j.neuroimage.2006.10.035.
[15]
Daunizeau, J. et al. 2013. An electrophysiological validation of stochastic DCM for fMRI. Frontiers in Computational Neuroscience. 6, (2013). DOI:https://doi.org/10.3389/fncom.2012.00103.
[16]
Edelman, R.R. et al. 1996. MRI: clinical magnetic resonance imaging volume 1. Saunders.
[17]
FIRST - FslWiki: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST.
[18]
Fischl, B. and Dale, A.M. 2000. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences. 97, 20 (Sep. 2000), 11050–11055. DOI:https://doi.org/10.1073/pnas.200033797.
[19]
Friston, K. and Penny, W. 2011. Post hoc Bayesian model selection. NeuroImage. 56, 4 (Jun. 2011), 2089–2099. DOI:https://doi.org/10.1016/j.neuroimage.2011.03.062.
[20]
Friston, K.J. et al. 2003. Dynamic causal modelling. NeuroImage. 19, 4 (Aug. 2003), 1273–1302. DOI:https://doi.org/10.1016/S1053-8119(03)00202-7.
[21]
Glover, G.H. et al. 2000. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine. 44, 1 (Jul. 2000), 162–167. DOI:https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E.
[22]
Golay, Xavier PhD* Perfusion Imaging Using Arterial Spin Labeling. Topics in Magnetic Resonance Imaging. 15, 1, 10–27.
[23]
Good, C.D. et al. 2001. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage. 14, 1 (Jul. 2001), 21–36. DOI:https://doi.org/10.1006/nimg.2001.0786.
[24]
Hobbs, N.Z. et al. 2011. The structural involvement of the cingulate cortex in premanifest and early Huntington’s disease. Movement Disorders. 26, 9 (Aug. 2011), 1684–1690. DOI:https://doi.org/10.1002/mds.23747.
[25]
Huettel, S.A. et al. 2014. Functional magnetic resonance imaging. Sinauer Associates, Inc., Publishers.
[26]
Human Brain Function: http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf1/.
[27]
Jezzard, P. et al. 2001. Functional magnetic resonance imaging: an introduction to methods. Oxford University Press.
[28]
Jezzard, P. and Balaban, R.S. 1995. Correction for geometric distortion in echo planar images from B0 field variations. Magnetic Resonance in Medicine. 34, 1 (Jul. 1995), 65–73. DOI:https://doi.org/10.1002/mrm.1910340111.
[29]
Johansen-Berg, H. and Behrens, T.E.J. eds. 2014. Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press.
[30]
John Detre’s slides on ASL fMRI: https://cfn.upenn.edu/perfusion/index.htm.
[31]
Johnson, G. Absolute Beginners Guide to Perfusion MRI.
[32]
Jones, D.K. 2011. Diffusion MRI: theory, methods, and applications. Oxford University Press.
[33]
Kahan, J. and Foltynie, T. 2013. Understanding DCM: Ten simple rules for the clinician. NeuroImage. 83, (Dec. 2013), 542–549. DOI:https://doi.org/10.1016/j.neuroimage.2013.07.008.
[34]
Le Bihan, D. 2003. Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience. 4, 6 (Jun. 2003), 469–480. DOI:https://doi.org/10.1038/nrn1119.
[35]
Li, B. et al. 2011. Generalised filtering and stochastic DCM for fMRI. NeuroImage. 58, 2 (Sep. 2011), 442–457. DOI:https://doi.org/10.1016/j.neuroimage.2011.01.085.
[36]
Logothetis, N.K. 2008. What we can do and what we cannot do with fMRI. Nature. 453, 7197 (Jun. 2008), 869–878. DOI:https://doi.org/10.1038/nature06976.
[37]
Logothetis, N.K. 2008. What we can do and what we cannot do with fMRI. Nature. 453, 7197 (Jun. 2008), 869–878. DOI:https://doi.org/10.1038/nature06976.
[38]
Marreiros, A.C. et al. 2008. Dynamic causal modelling for fMRI: A two-state model. NeuroImage. 39, 1 (Jan. 2008), 269–278. DOI:https://doi.org/10.1016/j.neuroimage.2007.08.019.
[39]
Mechelli, A. 2005. Structural Covariance in the Human Cortex. Journal of Neuroscience. 25, 36 (Sep. 2005), 8303–8310. DOI:https://doi.org/10.1523/JNEUROSCI.0357-05.2005.
[40]
Mechelli, A. et al. 2005. Voxel-Based Morphometry of the Human Brain: Methods and Applications. Current Medical Imaging Reviews. 1, 2 (Jun. 2005), 105–113. DOI:https://doi.org/10.2174/1573405054038726.
[41]
Norris, D.G. 2006. Principles of magnetic resonance assessment of brain function. Journal of Magnetic Resonance Imaging. 23, 6 (Jun. 2006), 794–807. DOI:https://doi.org/10.1002/jmri.20587.
[42]
Parkes, L.M. and Detre, J.A. 2003. ASL: Blood Perfusion Measurements Using Arterial Spin Labelling. Quantitative MRI of the Brain. P. Tofts, ed. John Wiley & Sons, Ltd. 455–473.
[43]
Pennec, X. et al. 1999. Understanding the "Demon’s Algorithm”: 3D Non-rigid Registration by Gradient Descent. Medical Image Computing and Computer-Assisted Intervention – MICCAI’99. C. Taylor and A. Colchester, eds. Springer Berlin Heidelberg. 597–605.
[44]
Questions and Answers in MRI: http://mri-q.com/index.html.
[45]
Razi, A. et al. 2015. Construct validation of a DCM for resting state fMRI. NeuroImage. 106, (Feb. 2015), 1–14. DOI:https://doi.org/10.1016/j.neuroimage.2014.11.027.
[46]
Rohlfing, T. 2012. Image Similarity and Tissue Overlaps as Surrogates for Image Registration Accuracy: Widely Used but Unreliable. IEEE Transactions on Medical Imaging. 31, 2 (Feb. 2012), 153–163. DOI:https://doi.org/10.1109/TMI.2011.2163944.
[47]
Rosa, M.J. et al. 2012. Post-hoc selection of dynamic causal models. Journal of Neuroscience Methods. 208, 1 (Jun. 2012), 66–78. DOI:https://doi.org/10.1016/j.jneumeth.2012.04.013.
[48]
Rueckert, D. et al. 1999. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging. 18, 8 (1999), 712–721. DOI:https://doi.org/10.1109/42.796284.
[49]
Schmitz, C. and Hof, P.R. 2005. Design-based stereology in neuroscience. Neuroscience. 130, 4 (Jan. 2005), 813–831. DOI:https://doi.org/10.1016/j.neuroscience.2004.08.050.
[50]
Stephan, K.E. et al. 2008. Nonlinear dynamic causal models for fMRI. NeuroImage. 42, 2 (Aug. 2008), 649–662. DOI:https://doi.org/10.1016/j.neuroimage.2008.04.262.
[51]
Stephan, K.E. 2004. On the role of general system theory for functional neuroimaging. Journal of Anatomy. 205, 6 (Dec. 2004), 443–470. DOI:https://doi.org/10.1111/j.0021-8782.2004.00359.x.
[52]
Stephan, K.E. et al. 2010. Ten simple rules for dynamic causal modeling. NeuroImage. 49, 4 (Feb. 2010), 3099–3109. DOI:https://doi.org/10.1016/j.neuroimage.2009.11.015.
[53]
Studholme, C. et al. 1999. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition. 32, 1 (Jan. 1999), 71–86. DOI:https://doi.org/10.1016/S0031-3203(98)00091-0.
[54]
Tofts, P. and John Wiley & Sons, Ltd 2003. Quantitative MRI of the brain: measuring changes caused by disease. Wiley.
[55]
Triantafyllou, C. et al. 2005. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. NeuroImage. 26, 1 (May 2005), 243–250. DOI:https://doi.org/10.1016/j.neuroimage.2005.01.007.
[56]
Weiskopf, N. et al. 2006. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T. NeuroImage. 33, 2 (Nov. 2006), 493–504. DOI:https://doi.org/10.1016/j.neuroimage.2006.07.029.
[57]
Wiggins, G.C. et al. 2006. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magnetic Resonance in Medicine. 56, 1 (Jul. 2006), 216–223. DOI:https://doi.org/10.1002/mrm.20925.
[58]
Wright, I.C. et al. 1995. A Voxel-Based Method for the Statistical Analysis of Gray and White Matter Density Applied to Schizophrenia. NeuroImage. 2, 4 (Dec. 1995), 244–252. DOI:https://doi.org/10.1006/nimg.1995.1032.
[59]
Artifacts in Diffusion MRI.
[60]
15AD. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America. 89, 12 (15AD).