Andersson, Jesper L.R., Chloe Hutton, John Ashburner, Robert Turner, and Karl Friston, ‘Modeling Geometric Deformations in EPI Time Series’, NeuroImage, 13.5 (2001), 903–19 <https://doi.org/10.1006/nimg.2001.0746>
‘Artifacts in Diffusion MRI’ <http://stbb.nichd.nih.gov/pdf/9780195369779_Jone-Pierpaoli.pdf>
Ashburner, John, ‘A Fast Diffeomorphic Image Registration Algorithm’, NeuroImage, 38.1 (2007), 95–113 <https://doi.org/10.1016/j.neuroimage.2007.07.007>
———, ‘Computational Anatomy with the SPM Software’, Magnetic Resonance Imaging, 27.8 (2009), 1163–74 <https://doi.org/10.1016/j.mri.2009.01.006>
Ashburner, John, and Karl J. Friston, ‘Computing Average Shaped Tissue Probability Templates’, NeuroImage, 45.2 (2009), 333–41 <https://doi.org/10.1016/j.neuroimage.2008.12.008>
———, ‘Unified Segmentation’, NeuroImage, 26.3 (2005), 839–51 <https://doi.org/10.1016/j.neuroimage.2005.02.018>
———, ‘Voxel-Based Morphometry—The Methods’, NeuroImage, 11.6 (2000), 805–21 <https://doi.org/10.1006/nimg.2000.0582>
———, ‘Voxel-Based Morphometry—The Methods’, NeuroImage, 11.6 (2000), 805–21 <https://doi.org/10.1006/nimg.2000.0582>
Ashburner, John, and Stefan Klöppel, ‘Multivariate Models of Inter-Subject Anatomical Variability’, NeuroImage, 56.2 (2011), 422–39 <https://doi.org/10.1016/j.neuroimage.2010.03.059>
Attwell, David, and Costantino Iadecola, ‘The Neural Basis of Functional Brain Imaging Signals’, Trends in Neurosciences, 25.12 (2002), 621–25 <https://doi.org/10.1016/S0166-2236(02)02264-6>
Barnes, J., J. Foster, R.G. Boyes, T. Pepple, E.K. Moore, J.M. Schott, and others, ‘A Comparison of Methods for the Automated Calculation of Volumes and Atrophy Rates in the Hippocampus’, NeuroImage, 40.4 (2008), 1655–71 <https://doi.org/10.1016/j.neuroimage.2008.01.012>
Buxton, Richard B., Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques (Cambridge: Cambridge University Press, 2002) <http://dx.doi.org/10.1017/CBO9780511549854>
Buxton, Richard B., Kâmil Uludağ, David J. Dubowitz, and Thomas T. Liu, ‘Modeling the Hemodynamic Response to Brain Activation’, NeuroImage, 23 (2004), S220–33 <https://doi.org/10.1016/j.neuroimage.2004.07.013>
By:van Buchem, MA (van Buchem, MA); Tofts, PS (Tofts, PS), ‘Magnetization Transfer Imaging’, NEUROIMAGING CLINICS OF NORTH AMERICA NEUROIMAGING CLINICS OF NORTH AMERICA, 10.4 (2000) <http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=S12r93sw8L3b7BInz7B&page=1&doc=1>
Chupin, Marie, A. Romain Mukuna-Bantumbakulu, Dominique Hasboun, Eric Bardinet, Sylvain Baillet, Serge Kinkingnéhun, and others, ‘Anatomically Constrained Region Deformation for the Automated Segmentation of the Hippocampus and the Amygdala: Method and Validation on Controls and Patients with Alzheimer’s Disease’, NeuroImage, 34.3 (2007), 996–1019 <https://doi.org/10.1016/j.neuroimage.2006.10.035>
Daunizeau, J., L. Lemieux, A. E. Vaudano, K. J. Friston, and K. E. Stephan, ‘An Electrophysiological Validation of Stochastic DCM for fMRI’, Frontiers in Computational Neuroscience, 6 (2013) <https://doi.org/10.3389/fncom.2012.00103>
‘Dynamic Magnetic Resonance Imaging of Human Brain Activity during Primary Sensory Stimulation.’, Proceedings of the National Academy of Sciences of the United States of America, 89.12 (15AD) <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC49355/>
Edelman, Robert R., John R. Hesselink, and Michael B. Zlatkin, MRI: Clinical Magnetic Resonance Imaging Volume 1, 2nd ed (Philadelphia: Saunders, 1996)
‘FIRST - FslWiki’ <http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST>
Fischl, B., and A. M. Dale, ‘Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance Images’, Proceedings of the National Academy of Sciences, 97.20 (2000), 11050–55 <https://doi.org/10.1073/pnas.200033797>
Friston, Karl, and Will Penny, ‘Post Hoc Bayesian Model Selection’, NeuroImage, 56.4 (2011), 2089–99 <https://doi.org/10.1016/j.neuroimage.2011.03.062>
Friston, K.J., L. Harrison, and W. Penny, ‘Dynamic Causal Modelling’, NeuroImage, 19.4 (2003), 1273–1302 <https://doi.org/10.1016/S1053-8119(03)00202-7>
Glover, Gary H., Tie-Qiang Li, and David Ress, ‘Image-Based Method for Retrospective Correction of Physiological Motion Effects in fMRI: RETROICOR’, Magnetic Resonance in Medicine, 44.1 (2000), 162–67 <https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E>
Golay, Xavier PhD*, ‘Perfusion Imaging Using Arterial Spin Labeling’, Topics in Magnetic Resonance Imaging, 15.1, 10–27 <http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&AN=00002142-200402000-00003&LSLINK=80&D=ovft>
Good, Catriona D., Ingrid S. Johnsrude, John Ashburner, Richard N.A. Henson, Karl J. Friston, and Richard S.J. Frackowiak, ‘A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains’, NeuroImage, 14.1 (2001), 21–36 <https://doi.org/10.1006/nimg.2001.0786>
Hobbs, Nicola Z., Amy V. Pedrick, Miranda J. Say, Chris Frost, Rachelle Dar Santos, Allison Coleman, and others, ‘The Structural Involvement of the Cingulate Cortex in Premanifest and Early Huntington’s Disease’, Movement Disorders, 26.9 (2011), 1684–90 <https://doi.org/10.1002/mds.23747>
Huettel, Scott A., Allen W. Song, and Gregory McCarthy, Functional Magnetic Resonance Imaging, Third edition (Sunderland, Massachusetts, U.S.A.: Sinauer Associates, Inc., Publishers, 2014)
‘Human Brain Function’ <http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf1/>
Jezzard, Peter, and Robert S. Balaban, ‘Correction for Geometric Distortion in Echo Planar Images from B0 Field Variations’, Magnetic Resonance in Medicine, 34.1 (1995), 65–73 <https://doi.org/10.1002/mrm.1910340111>
Jezzard, Peter, Paul M. Matthews, and Stephen M. Smith, Functional Magnetic Resonance Imaging: An Introduction to Methods (Oxford: Oxford University Press, 2001)
Johansen-Berg, Heidi, and Timothy E. J. Behrens, eds., Diffusion MRI: From Quantitative Measurement to in Vivo Neuroanatomy, Second edition (Amsterdam: Academic Press, 2014) <http://www.sciencedirect.com/science/book/9780123964601>
‘John Detre’s Slides on ASL fMRI’ <https://cfn.upenn.edu/perfusion/index.htm>
Johnson, Glyn, ‘Absolute Beginners Guide to Perfusion MRI’ <http://cds.ismrm.org/ismrm-2008/files/Syllabus-036.pdf>
Jones, Derek K., Diffusion MRI: Theory, Methods, and Applications (New York: Oxford University Press, 2011)
Kahan, Joshua, and Tom Foltynie, ‘Understanding DCM: Ten Simple Rules for the Clinician’, NeuroImage, 83 (2013), 542–49 <https://doi.org/10.1016/j.neuroimage.2013.07.008>
Le Bihan, Denis, ‘Looking into the Functional Architecture of the Brain with Diffusion MRI’, Nature Reviews Neuroscience, 4.6 (2003), 469–80 <https://doi.org/10.1038/nrn1119>
Li, Baojuan, Jean Daunizeau, Klaas E. Stephan, Will Penny, Dewen Hu, and Karl Friston, ‘Generalised Filtering and Stochastic DCM for fMRI’, NeuroImage, 58.2 (2011), 442–57 <https://doi.org/10.1016/j.neuroimage.2011.01.085>
Logothetis, Nikos K., ‘What We Can Do and What We Cannot Do with fMRI’, Nature, 453.7197 (2008), 869–78 <https://doi.org/10.1038/nature06976>
———, ‘What We Can Do and What We Cannot Do with fMRI’, Nature, 453.7197 (2008), 869–78 <https://doi.org/10.1038/nature06976>
Marreiros, A.C., S.J. Kiebel, and K.J. Friston, ‘Dynamic Causal Modelling for fMRI: A Two-State Model’, NeuroImage, 39.1 (2008), 269–78 <https://doi.org/10.1016/j.neuroimage.2007.08.019>
Mechelli, A., ‘Structural Covariance in the Human Cortex’, Journal of Neuroscience, 25.36 (2005), 8303–10 <https://doi.org/10.1523/JNEUROSCI.0357-05.2005>
Mechelli, Andrea, Cathy Price, Karl Friston, and John Ashburner, ‘Voxel-Based Morphometry of the Human Brain: Methods and Applications’, Current Medical Imaging Reviews, 1.2 (2005), 105–13 <https://doi.org/10.2174/1573405054038726>
Norris, David G., ‘Principles of Magnetic Resonance Assessment of Brain Function’, Journal of Magnetic Resonance Imaging, 23.6 (2006), 794–807 <https://doi.org/10.1002/jmri.20587>
Parkes, Laura M., and John A. Detre, ‘ASL: Blood Perfusion Measurements Using Arterial Spin Labelling’, in Quantitative MRI of the Brain, ed. by Paul Tofts (Chichester, UK: John Wiley & Sons, Ltd, 2003), pp. 455–73 <https://doi.org/10.1002/0470869526.ch13>
Pennec, Xavier, Pascal Cachier, and Nicholas Ayache, ‘Understanding the "Demon’s Algorithm”: 3D Non-Rigid Registration by Gradient Descent’, in Medical Image Computing and Computer-Assisted Intervention – MICCAI’99, ed. by Chris Taylor and Alain Colchester (Berlin, Heidelberg: Springer Berlin Heidelberg, 1999), mdclxxix, 597–605 <https://doi.org/10.1007/10704282_64>
‘Questions and Answers in MRI’ <http://mri-q.com/index.html>
Razi, Adeel, Joshua Kahan, Geraint Rees, and Karl J. Friston, ‘Construct Validation of a DCM for Resting State fMRI’, NeuroImage, 106 (2015), 1–14 <https://doi.org/10.1016/j.neuroimage.2014.11.027>
Rohlfing, T., ‘Image Similarity and Tissue Overlaps as Surrogates for Image Registration Accuracy: Widely Used but Unreliable’, IEEE Transactions on Medical Imaging, 31.2 (2012), 153–63 <https://doi.org/10.1109/TMI.2011.2163944>
Rosa, M.J., K. Friston, and W. Penny, ‘Post-Hoc Selection of Dynamic Causal Models’, Journal of Neuroscience Methods, 208.1 (2012), 66–78 <https://doi.org/10.1016/j.jneumeth.2012.04.013>
Rueckert, D., L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J. Hawkes, ‘Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images’, IEEE Transactions on Medical Imaging, 18.8 (1999), 712–21 <https://doi.org/10.1109/42.796284>
Schmitz, C., and P.R. Hof, ‘Design-Based Stereology in Neuroscience’, Neuroscience, 130.4 (2005), 813–31 <https://doi.org/10.1016/j.neuroscience.2004.08.050>
Stephan, K.E., W.D. Penny, R.J. Moran, H.E.M. den Ouden, J. Daunizeau, and K.J. Friston, ‘Ten Simple Rules for Dynamic Causal Modeling’, NeuroImage, 49.4 (2010), 3099–3109 <https://doi.org/10.1016/j.neuroimage.2009.11.015>
Stephan, Klaas Enno, ‘On the Role of General System Theory for Functional Neuroimaging’, Journal of Anatomy, 205.6 (2004), 443–70 <https://doi.org/10.1111/j.0021-8782.2004.00359.x>
Stephan, Klaas Enno, Lars Kasper, Lee M. Harrison, Jean Daunizeau, Hanneke E.M. den Ouden, Michael Breakspear, and others, ‘Nonlinear Dynamic Causal Models for fMRI’, NeuroImage, 42.2 (2008), 649–62 <https://doi.org/10.1016/j.neuroimage.2008.04.262>
Studholme, C., D.L.G. Hill, and D.J. Hawkes, ‘An Overlap Invariant Entropy Measure of 3D Medical Image Alignment’, Pattern Recognition, 32.1 (1999), 71–86 <https://doi.org/10.1016/S0031-3203(98)00091-0>
Tofts, Paul and John Wiley & Sons, Ltd, Quantitative MRI of the Brain: Measuring Changes Caused by Disease (Chichester, West Sussex: Wiley, 2003) <http://dx.doi.org/10.1002/0470869526>
Triantafyllou, C., R.D. Hoge, G. Krueger, C.J. Wiggins, A. Potthast, G.C. Wiggins, and others, ‘Comparison of Physiological Noise at 1.5 T, 3 T and 7 T and Optimization of fMRI Acquisition Parameters’, NeuroImage, 26.1 (2005), 243–50 <https://doi.org/10.1016/j.neuroimage.2005.01.007>
Weiskopf, Nikolaus, Chloe Hutton, Oliver Josephs, and Ralf Deichmann, ‘Optimal EPI Parameters for Reduction of Susceptibility-Induced BOLD Sensitivity Losses: A Whole-Brain Analysis at 3 T and 1.5 T’, NeuroImage, 33.2 (2006), 493–504 <https://doi.org/10.1016/j.neuroimage.2006.07.029>
Wiggins, G.C., C. Triantafyllou, A. Potthast, A. Reykowski, M. Nittka, and L.L. Wald, ‘32-Channel 3 Tesla Receive-Only Phased-Array Head Coil with Soccer-Ball Element Geometry’, Magnetic Resonance in Medicine, 56.1 (2006), 216–23 <https://doi.org/10.1002/mrm.20925>
Wright, I.C., P.K. McGuire, J.-B. Poline, J.M. Travere, R.M. Murray, C.D. Frith, and others, ‘A Voxel-Based Method for the Statistical Analysis of Gray and White Matter Density Applied to Schizophrenia’, NeuroImage, 2.4 (1995), 244–52 <https://doi.org/10.1006/nimg.1995.1032>