1.
Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends in Neurosciences 25, 621–625 (2002).
2.
Buxton, R. B., Uludağ, K., Dubowitz, D. J. & Liu, T. T. Modeling the hemodynamic response to brain activation. NeuroImage 23, S220–S233 (2004).
3.
Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).
4.
Edelman, R. R., Hesselink, J. R. & Zlatkin, M. B. MRI: clinical magnetic resonance imaging volume 1. (Saunders, 1996).
5.
Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).
6.
Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America 89, (15AD).
7.
Norris, D. G. Principles of magnetic resonance assessment of brain function. Journal of Magnetic Resonance Imaging 23, 794–807 (2006).
8.
Jezzard, P., Matthews, P. M. & Smith, S. M. Functional magnetic resonance imaging: an introduction to methods. (Oxford University Press, 2001).
9.
Buxton, R. B. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. (Cambridge University Press, 2002).
10.
Huettel, S. A., Song, A. W. & McCarthy, G. Functional magnetic resonance imaging. (Sinauer Associates, Inc., Publishers, 2014).
11.
Human Brain Function. http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf1/.
12.
Triantafyllou, C. et al. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. NeuroImage 26, 243–250 (2005).
13.
Wiggins, G. C. et al. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magnetic Resonance in Medicine 56, 216–223 (2006).
14.
Weiskopf, N., Hutton, C., Josephs, O. & Deichmann, R. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T. NeuroImage 33, 493–504 (2006).
15.
Glover, G. H., Li, T.-Q. & Ress, D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine 44, 162–167 (2000).
16.
Jezzard, P. & Balaban, R. S. Correction for geometric distortion in echo planar images from B0 field variations. Magnetic Resonance in Medicine 34, 65–73 (1995).
17.
Andersson, J. L. R., Hutton, C., Ashburner, J., Turner, R. & Friston, K. Modeling Geometric Deformations in EPI Time Series. NeuroImage 13, 903–919 (2001).
18.
Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. NeuroImage 19, 1273–1302 (2003).
19.
Stephan, K. E. On the role of general system theory for functional neuroimaging. Journal of Anatomy 205, 443–470 (2004).
20.
Kahan, J. & Foltynie, T. Understanding DCM: Ten simple rules for the clinician. NeuroImage 83, 542–549 (2013).
21.
Stephan, K. E. et al. Ten simple rules for dynamic causal modeling. NeuroImage 49, 3099–3109 (2010).
22.
Marreiros, A. C., Kiebel, S. J. & Friston, K. J. Dynamic causal modelling for fMRI: A two-state model. NeuroImage 39, 269–278 (2008).
23.
Stephan, K. E. et al. Nonlinear dynamic causal models for fMRI. NeuroImage 42, 649–662 (2008).
24.
Li, B. et al. Generalised filtering and stochastic DCM for fMRI. NeuroImage 58, 442–457 (2011).
25.
Daunizeau, J., Lemieux, L., Vaudano, A. E., Friston, K. J. & Stephan, K. E. An electrophysiological validation of stochastic DCM for fMRI. Frontiers in Computational Neuroscience 6, (2013).
26.
Friston, K. & Penny, W. Post hoc Bayesian model selection. NeuroImage 56, 2089–2099 (2011).
27.
Rosa, M. J., Friston, K. & Penny, W. Post-hoc selection of dynamic causal models. Journal of Neuroscience Methods 208, 66–78 (2012).
28.
Razi, A., Kahan, J., Rees, G. & Friston, K. J. Construct validation of a DCM for resting state fMRI. NeuroImage 106, 1–14 (2015).
29.
Jones, D. K. Diffusion MRI: theory, methods, and applications. (Oxford University Press, 2011).
30.
Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. (Academic Press, 2014).
31.
Le Bihan, D. Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience 4, 469–480 (2003).
32.
Questions and Answers in MRI. http://mri-q.com/index.html.
33.
Artifacts in Diffusion MRI.
34.
Golay, Xavier PhD*. Perfusion Imaging Using Arterial Spin Labeling. Topics in Magnetic Resonance Imaging 15, 10–27.
35.
Parkes, L. M. & Detre, J. A. ASL: Blood Perfusion Measurements Using Arterial Spin Labelling. in Quantitative MRI of the Brain (ed. Tofts, P.) 455–473 (John Wiley & Sons, Ltd, 2003). doi:10.1002/0470869526.ch13.
36.
Johnson, G. Absolute Beginners Guide to Perfusion MRI.
37.
John Detre’s slides on ASL fMRI. https://cfn.upenn.edu/perfusion/index.htm.
38.
Tofts, P. & John Wiley & Sons, Ltd. Quantitative MRI of the brain: measuring changes caused by disease. (Wiley, 2003).
39.
By:van Buchem, MA (van Buchem, MA); Tofts, PS (Tofts, PS). Magnetization transfer imaging. NEUROIMAGING CLINICS OF NORTH AMERICA NEUROIMAGING CLINICS OF NORTH AMERICA 10, (2000).
40.
Schmitz, C. & Hof, P. R. Design-based stereology in neuroscience. Neuroscience 130, 813–831 (2005).
41.
Hobbs, N. Z. et al. The structural involvement of the cingulate cortex in premanifest and early Huntington’s disease. Movement Disorders 26, 1684–1690 (2011).
42.
Chupin, M. et al. Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer’s disease. NeuroImage 34, 996–1019 (2007).
43.
Ashburner, J. & Friston, K. J. Voxel-Based Morphometry—The Methods. NeuroImage 11, 805–821 (2000).
44.
Barnes, J. et al. A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. NeuroImage 40, 1655–1671 (2008).
45.
Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences 97, 11050–11055 (2000).
46.
FIRST - FslWiki. http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST.
47.
Ashburner, J. & Klöppel, S. Multivariate models of inter-subject anatomical variability. NeuroImage 56, 422–439 (2011).
48.
Mechelli, A. Structural Covariance in the Human Cortex. Journal of Neuroscience 25, 8303–8310 (2005).
49.
Wright, I. C. et al. A Voxel-Based Method for the Statistical Analysis of Gray and White Matter Density Applied to Schizophrenia. NeuroImage 2, 244–252 (1995).
50.
Ashburner, J. & Friston, K. J. Voxel-Based Morphometry—The Methods. NeuroImage 11, 805–821 (2000).
51.
Good, C. D. et al. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage 14, 21–36 (2001).
52.
Ashburner, J. & Friston, K. J. Unified segmentation. NeuroImage 26, 839–851 (2005).
53.
Mechelli, A., Price, C., Friston, K. & Ashburner, J. Voxel-Based Morphometry of the Human Brain: Methods and Applications. Current Medical Imaging Reviews 1, 105–113 (2005).
54.
Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007).
55.
Ashburner, J. & Friston, K. J. Computing average shaped tissue probability templates. NeuroImage 45, 333–341 (2009).
56.
Ashburner, J. Computational anatomy with the SPM software. Magnetic Resonance Imaging 27, 1163–1174 (2009).
57.
Studholme, C., Hill, D. L. G. & Hawkes, D. J. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32, 71–86 (1999).
58.
Pennec, X., Cachier, P. & Ayache, N. Understanding the "Demon’s Algorithm”: 3D Non-rigid Registration by Gradient Descent. in Medical Image Computing and Computer-Assisted Intervention – MICCAI’99 (eds. Taylor, C. & Colchester, A.) vol. 1679 597–605 (Springer Berlin Heidelberg, 1999).
59.
Rueckert, D. et al. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999).
60.
Rohlfing, T. Image Similarity and Tissue Overlaps as Surrogates for Image Registration Accuracy: Widely Used but Unreliable. IEEE Transactions on Medical Imaging 31, 153–163 (2012).