1.
Pough, F. Harvey, Janis, Christine M., Heiser, John B. Vertebrate Life. 6th ed. Prentice Hall; 2002.
2.
Kardong, Kenneth V. Vertebrates: Comparative Anatomy, Function, Evolution. 4th ed. (International ed.). McGraw-Hill; 2006.
3.
Ahlberg, Per Erik, Systematics Association. Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, Genetics and Development. Vol Systematics Association special volume series. Taylor & Francis; 2001.
4.
DONOGHUE P, PURNELL M. Genome duplication, extinction and vertebrate evolution. Trends in Ecology & Evolution. 2005;20(6):312-319. doi:10.1016/j.tree.2005.04.008
5.
Carroll, Robert L. Chapter 1: Fossils and relationships. In: Vertebrate Paleontology and Evolution. Freeman; 1988:1-15. https://contentstore.cla.co.uk/secure/link?id=e82a781a-f9d4-ef11-88f9-845c5d84cf17
6.
Gee, Henry. In Search of Deep Time: Beyond the Fossil Record to a New History of Life. Free Press; 1999.
7.
Hammer, Øyvind, Harper, D. A. T. Paleontological Data Analysis. Blackwell; 2006.
8.
Hammer yvind, Harper DAT, eds. Paleontological Data Analysis. Blackwell Publishing; 2005. doi:10.1002/9780470750711
9.
Lomolino, Mark V., Brown, James H., Brown, James H., Riddle, Brett R. Biogeography. 3rd ed. Sinauer Associates; 2005.
10.
Cox CB, Moore PD, Ladle RJ. Biogeography: An Ecological and Evolutionary Approach. Ninth edition. Wiley Blackwell; 2016. https://ebookcentral.proquest.com/lib/ucl/detail.action?docID=4452969
11.
MacDonald, Glenn M. Biogeography: Space, Time and Life. Wiley; 2003.
12.
Chatterjee HJ, Tse JSY, Turvey ST. Using Ecological Niche Modelling to Predict Spatial and Temporal Distribution Patterns in Chinese Gibbons: Lessons from the Present and the Past. Folia Primatologica. 2012;83(2):85-99. doi:10.1159/000342696
13.
Chatterjee HJ. Phylogeny and Biogeography of Gibbons: A Dispersal-Vicariance Analysis. International Journal of Primatology. 2006;27(3):699-712. doi:10.1007/s10764-006-9044-1
14.
HIJMANS RJ, GRAHAM CH. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology. 2006;12(12):2272-2281. doi:10.1111/j.1365-2486.2006.01256.x
15.
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006;190(3-4):231-259. doi:10.1016/j.ecolmodel.2005.03.026
16.
Pough, F. Harvey. Herpetology. Prentice Hall; 1998.
17.
Adler, Kraig, Halliday, Tim. The New Encyclopedia of Reptiles and Amphibians. Oxford University Press; 2002.
18.
Duellman, William Edward, Trueb, Linda. Biology of Amphibians. McGraw-Hill; 1986.
19.
Liem, Karel F. Functional Anatomy of the Vertebrates: An Evolutionary Perspective. 3rd ed. Brooks/Cole-Thomson Learning; 2001.
20.
Biju SD, Bossuyt F. New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature. 2003;425(6959):711-714. doi:10.1038/nature02019
21.
Bossuyt F, Milinkovitch MC. From the Cover: Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences. 2000;97(12):6585-6590. doi:10.1073/pnas.97.12.6585
22.
Bossuyt F, Brown R, Hillis D, Cannatella D, Milinkovitch M. Phylogeny and Biogeography of a Cosmopolitan Frog Radiation: Late Cretaceous Diversification Resulted in Continent-Scale Endemism in the Family Ranidae. Systematic Biology. 2006;55(4):579-594. doi:10.1080/10635150600812551
23.
Evans SE, Jones MEH, Krause DW. A giant frog with South American affinities from the Late Cretaceous of Madagascar. Proceedings of the National Academy of Sciences. 2008;105(8):2951-2956. doi:10.1073/pnas.0707599105
24.
Vences M. Origin of Madagascar’s extant fauna: A perspective from amphibians, reptiles and other non‐flying vertebrates. Italian Journal of Zoology. 2004;71(sup2):217-228. doi:10.1080/11250000409356639
25.
Anne D. Yoder and Michael D. Nowak. Has Vicariance or Dispersal Been the Predominant Biogeographic Force in Madagascar? Only Time Will Tell. Annual Review of Ecology, Evolution, and Systematics. 2006;37. https://www.jstor.org/stable/30033838
26.
Roelants K, Gower DJ, Wilkinson M, et al. Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences. 2007;104(3):887-892. doi:10.1073/pnas.0608378104
27.
David Marjanović and Michel Laurin. Fossils, Molecules, Divergence Times, and the Origin of Lissamphibians. Systematic Biology. 2007;56(3). https://www.jstor.org/stable/20143044?seq=1#metadata_info_tab_contents
28.
Apesteguía S, Jones MEH. A Late Cretaceous "tuatara” (Lepidosauria: Sphenodontinae) from South America. Cretaceous Research. 2012;34:154-160. doi:10.1016/j.cretres.2011.10.014
29.
EVANS SE. At the feet of the dinosaurs: the early history and radiation of lizards. Biological Reviews. 2003;78(4):513-551. doi:10.1017/S1464793103006134
30.
Evans SE, Jones MEH. The Origin, Early History and Diversification of Lepidosauromorph Reptiles. In: New Aspects of Mesozoic Biodiversity. Vol 132. Springer Berlin Heidelberg; 2010:27-44. doi:10.1007/978-3-642-10311-7_2
31.
KEQIN G, NORELL MA. Taxonomic composition and systematics of late cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities, Mongolian Gobi desert. Bulletin of the American Museum of Natural History. 2000;249:1-118. doi:10.1206/0003-0090(2000)249<0001:TCASOL>2.0.CO;2
32.
Adler, Kraig, Halliday, Tim. The New Encyclopedia of Reptiles and Amphibians. Oxford University Press; 2002.
33.
Jones MEH, Tennyson AJD, Worthy JP, Evans SE, Worthy TH. A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (Sphenodon). Proceedings of the Royal Society B: Biological Sciences. 2009;276(1660):1385-1390. doi:10.1098/rspb.2008.1785
34.
J. Robert Macey, James A. Schulte, II, Allan Larson, Natalia B. Ananjeva, Yuezhao Wang, Rohan Pethiyagoda, Nasrullah Rastegar-Pouyani and Theodore J. Papenfuss. Evaluating Trans-Tethys Migration: An Example Using Acrodont Lizard Phylogenetics. Systematic Biology. 2000;49(2). https://www.jstor.org/stable/2585219
35.
Zug, George R. Herpetology: An Introductory Biology of Amphibians and Reptiles. Academic Press; 1993. https://www.sciencedirect.com/book/9780127826202/herpetology
36.
Kupfer A, Müller H, Antoniazzi MM, et al. Parental investment by skin feeding in a caecilian amphibian. Nature. 2006;440(7086):926-929. doi:10.1038/nature04403
37.
Roelants K, Gower DJ, Wilkinson M, et al. Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences. 2007;104(3):887-892. doi:10.1073/pnas.0608378104
38.
GOWER DJ, GIRI V, DHARNE MS, SHOUCHE YS. Frequency of independent origins of viviparity among caecilians (Gymnophiona): evidence from the first ‘live-bearing’ Asian amphibian. Journal of Evolutionary Biology. 2008;21(5):1220-1226. doi:10.1111/j.1420-9101.2008.01577.x
39.
GOWER DJ, WILKINSON M. Conservation Biology of Caecilian Amphibians. Conservation Biology. 2005;19(1):45-55. doi:10.1111/j.1523-1739.2005.00589.x
40.
WILKINSON M, SAN MAURO D, SHERRATT E, GOWER DJ. A nine-family classification of caecilians (Amphibia: Gymnophiona). Zootaxa. 2011;2874(1). doi:10.11646/zootaxa.2874.1.3
41.
WILKINSON M. Comparative morphology and evolution of the lungless caecilianAtretochoana eiselti(Taylor) (Amphibia: Gymnophiona: Typhlonectidae). Biological Journal of the Linnean Society. 1997;62(1):39-109. doi:10.1006/bijl.1997.0143
42.
Ole Seehausen. African Cichlid Fish: A Model System in Adaptive Radiation Research. Proceedings: Biological Sciences. 2006;273(1597). https://www.jstor.org/stable/25223557
43.
Kocher TD. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics. 2004;5(4):288-298. doi:10.1038/nrg1316
44.
Schluter, Dolph. The Ecology of Adaptive Radiation. Vol Oxford series in ecology and evolution. Oxford University Press; 2000.
45.
Schliewen UK, Tautz D, Pääbo S. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature. 1994;368(6472):629-632. doi:10.1038/368629a0
46.
Joyce DA, Lunt DH, Bills R, et al. An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature. 2005;435(7038):90-95. doi:10.1038/nature03489
47.
Day JJ, Cotton JA, Barraclough TG. Tempo and Mode of Diversification of Lake Tanganyika Cichlid Fishes. PLoS ONE. 2008;3(3). doi:10.1371/journal.pone.0001730
48.
Joyce DA, Lunt DH, Genner MJ, Turner GF, Bills R, Seehausen O. Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology. 2011;21(3):R108-R109. doi:10.1016/j.cub.2010.11.029
49.
Verheyen E. Origin of the Superflock of Cichlid Fishes from Lake Victoria, East Africa. Science. 2003;300(5617):325-329. doi:10.1126/science.1080699
50.
Albertson RC, Markert JA, Danley PD, Kocher TD. Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences. 1999;96(9):5107-5110. doi:10.1073/pnas.96.9.5107
51.
Genner MJ, Seehausen O, Lunt DH, et al. Age of Cichlids: New Dates for Ancient Lake Fish Radiations. Molecular Biology and Evolution. 2007;24(5):1269-1282. doi:10.1093/molbev/msm050
52.
Harshman J, Braun EL, Braun MJ, et al. Phylogenomic evidence for multiple losses of flight in ratite birds. Proceedings of the National Academy of Sciences. 2008;105(36):13462-13467. doi:10.1073/pnas.0803242105
53.
Feduccia A. ‘Big bang’ for tertiary birds? Trends in Ecology & Evolution. 2003;18(4):172-176. doi:10.1016/S0169-5347(03)00017-X
54.
Cooper A. Mass Survival of Birds Across the Cretaceous- Tertiary Boundary: Molecular Evidence. Science. 1997;275(5303):1109-1113. doi:10.1126/science.275.5303.1109
55.
Longrich NR, Tokaryk T, Field DJ. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proceedings of the National Academy of Sciences. 2011;108(37):15253-15257. doi:10.1073/pnas.1110395108
56.
Roelants K, Gower DJ, Wilkinson M, et al. Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences. 2007;104(3):887-892. doi:10.1073/pnas.0608378104
57.
Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC. Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers. Current Biology. 2011;21(21):1838-1844. doi:10.1016/j.cub.2011.09.039
58.
Ericson PGP, Anderson CL, Britton T, et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biology Letters. 2006;2(4):543-547. doi:10.1098/rsbl.2006.0523
59.
Bininda-Emonds ORP, Cardillo M, Jones KE, et al. The delayed rise of present-day mammals. Nature. 2007;446(7135):507-512. doi:10.1038/nature05634
60.
Roos J, Aggarwal RK, Janke A. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous–Tertiary boundary. Molecular Phylogenetics and Evolution. 2007;45(2):663-673. doi:10.1016/j.ympev.2007.06.018
61.
Peter R. Grant and B. Rosemary Grant. Adaptive Radiation of Darwin’s Finches: Recent data help explain how this famous group of Galápagos birds evolved, although gaps in our understanding remain. American Scientist. 2002;90(2). https://www.jstor.org/stable/27857627
62.
Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC. Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers. Current Biology. 2011;21(21):1838-1844. doi:10.1016/j.cub.2011.09.039
63.
Adkins RM, Honeycutt RL. Molecular phylogeny of the superorder Archonta. Proceedings of the National Academy of Sciences. 1991;88(22):10317-10321. doi:10.1073/pnas.88.22.10317
64.
Allard M. Support for Interordinal Eutherian Relationships with an Emphasis on Primates and Their Archontan Relatives. Molecular Phylogenetics and Evolution. 1996;5(1):78-88. doi:10.1006/mpev.1996.0007
65.
Loren K. Ammerman and David M. Hillis. A Molecular Test of Bat Relationships: Monophyly or Diphyly? Systematic Biology. Vol. 41(No. 2):222-232.
66.
Robert J. Asher, Jonathan H. Geisler and Marcelo R. Sánchez-Villagra. Morphology, Paleontology, and Placental Mammal Phylogeny. Systematic Biology. Vol. 57(No. 2):311-317.
67.
General Anthropology. General Anthropology Bulletin of the General Anthropology Division. 2002;8(2):1-16. doi:10.1525/ga.2002.8.2.1
68.
Kay RF, Thewissen JGM, Yoder AD. Cranial anatomy ofIgnacius graybullianus and the affinities of the Plesiadapiformes. American Journal of Physical Anthropology. 1992;89(4):477-498. doi:10.1002/ajpa.1330890409
69.
Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J. Retroposed Elements as Archives for the Evolutionary History of Placental Mammals. PLoS Biology. 2006;4(4). doi:10.1371/journal.pbio.0040091
70.
Lin YH, Penny D. Implications for Bat Evolution from Two New Complete Mitochondrial Genomes. Molecular Biology and Evolution. 2001;18(4):684-688. doi:10.1093/oxfordjournals.molbev.a003850
71.
Madsen O, Scally M, Douady CJ, et al. Parallel adaptive radiations in two major clades of placental mammals : Article : Nature. Nature. 2001;409(6820):610-614. doi:10.1038/35054544
72.
Miyamoto M. A Congruence Study of Molecular and Morphological Data for Eutherian Mammals. Molecular Phylogenetics and Evolution. 1996;6(3):373-390. doi:10.1006/mpev.1996.0087
73.
M. Miyamoto, Calvin A. Porter, Morr M. c- Myc Gene Sequences and the Phylogeny of Bats and Other Eutherian Mammals. Systematic Biology. 2000;49(3):501-514. doi:10.1080/10635159950127367
74.
Murphy WJ. Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics. Science. 2001;294(5550):2348-2351. doi:10.1126/science.1067179
75.
NOVACEK MJ, WYSS AR. HIGHER-LEVEL RELATIONSHIPS OF THE RECENT EUTHERIAN ORDERS: MORPHOLOGICAL EVIDENCE. Cladistics. 1986;2(4):257-287. doi:10.1111/j.1096-0031.1986.tb00463.x
76.
J. D. Pettigrew, B. G. M. Jamieson, S. K. Robson, L. S. Hall, K. I. McAnally and H. M. Cooper. Phylogenetic Relations Between Microbats, Megabats and Primates (Mammalia: Chiroptera and Primates). Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. Vol. 325(No. 1229):489-559.
77.
SPRINGER M. Molecules consolidate the placental mammal tree. Trends in Ecology & Evolution. 2004;19(8):430-438. doi:10.1016/j.tree.2004.05.006
78.
Springer MS, Murphy WJ. Mammalian evolution and biomedicine: new views from phylogeny. Biological Reviews. 2007;82(3):375-392. doi:10.1111/j.1469-185X.2007.00016.x
79.
Springer M, Meredith R, Eizirik E, Teeling E, Murphy W. Morphology and Placental Mammal Phylogeny. Systematic Biology. 2008;57(3):499-503. doi:10.1080/10635150802164504
80.
Emma C. Teeling, Ole Madsen, Ronald A. Van Den Bussche, Wilfried W. de Jong, Michael J. Stanhope and Mark S. Springer. Microbat Paraphyly and the Convergent Evolution of a Key Innovation in Old World Rhinolophoid Microbats. Proceedings of the National Academy of Sciences of the United States of America. Vol. 99(No. 3):1431-1436.
81.
Teeling EC. A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record. Science. 2005;307(5709):580-584. doi:10.1126/science.1105113
82.
Van Den Bussche R. Characterization and Phylogenetic Utility of the Mammalian Protamine P1 Gene. Molecular Phylogenetics and Evolution. 2002;22(3):333-341. doi:10.1006/mpev.2001.1051
83.
Ronald A. van Den Bussche and Steven R. Hoofer. Phylogenetic Relationships among Recent Chiropteran Families and the Importance of Choosing Appropriate Out-Group Taxa. Journal of Mammalogy. 2004;85(2). https://www.jstor.org/stable/1383763?
84.
Karen E. Sears. Constraints on the Morphological Evolution of Marsupial Shoulder Girdles. Evolution. Vol. 58(No. 10):2353-2370.
85.
Jason A. Lillegraven. Biological Considerations of the Marsupial-Placental Dichotomy. Evolution. Vol. 29(No. 4):707-722.
86.
Szalay FS. Paleobiogeography and metatherian evolution. In: Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press; 1995:407-428. doi:10.1017/CBO9780511565571.010
87.
Nilsson MA, Arnason U, Spencer PBS, Janke A. Marsupial relationships and a timeline for marsupial radiation in South Gondwana. Gene. 2004;340(2):189-196. doi:10.1016/j.gene.2004.07.040
88.
Nunn CL, Smith KK. Statistical Analyses of Developmental Sequences: The Craniofacial Region in Marsupial and Placental Mammals. The American Naturalist. 1998;152(1):82-101. doi:10.1086/286151
89.
Vera Weisbecker, Anjali Goswami, Stephen Wroe and Marcelo R. Sánchez-Villagra. Ossification Heterochrony in the Therian Postcranial Skeleton and the Marsupial-Placental Dichotomy. Evolution. Vol. 62(No. 8):2027-2041.
90.
Van Valkenburgh B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology. 2007;47(1):147-163. doi:10.1093/icb/icm016
91.
Blaire van Valkenburgh. Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences. 1999;27:51-63. https://search.proquest.com/docview/220785610?OpenUrlRefId=info:xri/sid:primo&accountid=14511
92.
Ricklefs, Robert E., Schluter, Dolph. Historical Diversity Patterns in North American Large Herbivores and Carnivores. In: Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press; 1993:330-340.
93.
Goswami A, Friscia A, eds. Carnivoran Evolution: New Views on Phylogeny, Form and Function. Cambridge University Press; 2010. doi:10.1017/CBO9781139193436
94.
Goswami, Anjali, Friscia, Anthony. Carnivoran Evolution: New Views on Phylogeny, Form, and Function. Vol Cambridge studies in morphology and molecules. Cambridge University Press; 2010.
95.
Gina D. Wesley-Hunt. The Morphological Diversification of Carnivores in North America. Paleobiology. Vol. 31(No. 1):35-55.
96.
Rose, Kenneth David, Archibald, J. David. The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades. Johns Hopkins University Press; 2005:175-198.
97.
Scott, Kathleen M., Jacobs, Louis L., Janis, Christine M., Gunnell, Gregg F., Uhen, Mark D. Evolution of Tertiary Mammals of North America. Cambridge University Press; 1998.
98.
Pasquale Raia and Shai Meiri. The Island Rule in Large Mammals: Paleontology Meets Ecology. Evolution. Vol. 60(No. 8):1731-1742.
99.
Lister AM. Rapid dwarfing of red deer on Jersey in the Last Interglacial. Nature. 1989;342(6249):539-542. doi:10.1038/342539a0
100.
Stephen Jay Gould and Niles Eldredge. Punctuated Equilibria: The Tempo and Mode of Evolution Reconsidered. Paleobiology. 1977;3(2). https://www.jstor.org/stable/2400177
101.
Lister AM. The Origin and Evolution of the Woolly Mammoth. Science. 2001;294(5544):1094-1097. doi:10.1126/science.1056370
102.
Lister, Adrian, Bahn, Paul G. Mammoths: Giants of the Ice Age. Rev. ed. University of California Press; 2007.
103.
Fleagle JG. Primate Adaptation and Evolution. 3rd ed. Elsevier/Academic Press; 2013. https://www.sciencedirect.com/book/9780123786326/primate-adaptation-and-evolution
104.
Aiello, Leslie, Dean, Christopher. An Introduction to Human Evolutionary Anatomy. Academic Press; 1990.
105.
An Introduction to Human Evolutionary Anatomy. Elsevier; 2002. https://www.sciencedirect.com/book/9780120455911/an-introduction-to-human-evolutionary-anatomy
106.
Dunbar, R. I. M., Barrett, Louise, British Broadcasting Corporation. Cousins: Our Primate Relatives. BBC Worldwide; 2000.
107.
Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, von Koenigswald W, Smith BH. Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology. PLoS ONE. 2009;4(5). doi:10.1371/journal.pone.0005723
108.
Groves, Colin P. Primate Taxonomy. Vol Smithsonian series in comparative evolutionary biology. Smithsonian Institution Press; 2001.
109.
Mittermeier RA, Wallis J, Rylands AB, et al. Primates in Peril: The World’s 25 Most Endangered Primates 2008–2010. Primate Conservation. 2009;24(1):1-57. https://doi.org/10.1896/052.024.0101
110.
Chatterjee HJ, Ho SY, Barnes I, Groves C. Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evolutionary Biology. 2009;9(1). doi:10.1186/1471-2148-9-259