1.
Pough, F. Harvey, Janis, Christine M., Heiser, John B.: Vertebrate life. Prentice Hall, Upper Saddle River, NJ (2002).
2.
Kardong, Kenneth V.: Vertebrates: comparative anatomy, function, evolution. McGraw-Hill, New York (2006).
3.
Ahlberg, Per Erik, Systematics Association: Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor & Francis, London (2001).
4.
DONOGHUE, P., PURNELL, M.: Genome duplication, extinction and vertebrate evolution. Trends in Ecology & Evolution. 20, 312–319 (2005). https://doi.org/10.1016/j.tree.2005.04.008.
5.
Carroll, Robert L.: Chapter 1: Fossils and relationships. In: Vertebrate paleontology and evolution. pp. 1–15. Freeman, New York, N.Y. (1988).
6.
Gee, Henry: In search of deep time: beyond the fossil record to a new history of life. Free Press, London (1999).
7.
Hammer, Øyvind, Harper, D. A. T.: Paleontological data analysis. Blackwell, Malden, MA (2006).
8.
Hammer, yvind, Harper, D.A.T. eds: Paleontological Data Analysis. Blackwell Publishing, Malden, MA, USA (2005). https://doi.org/10.1002/9780470750711.
9.
Lomolino, Mark V., Brown, James H., Brown, James H., Riddle, Brett R.: Biogeography. Sinauer Associates, Sunderland, Mass (2005).
10.
Cox, C.B., Moore, P.D., Ladle, R.J.: Biogeography: an ecological and evolutionary approach. Wiley Blackwell, Chichester, West Sussex, UK (2016).
11.
MacDonald, Glenn M.: Biogeography: space, time and life. Wiley, New York (2003).
12.
Chatterjee, H.J., Tse, J.S.Y., Turvey, S.T.: Using Ecological Niche Modelling to Predict Spatial and Temporal Distribution Patterns in Chinese Gibbons: Lessons from the Present and the Past. Folia Primatologica. 83, 85–99 (2012). https://doi.org/10.1159/000342696.
13.
Chatterjee, H.J.: Phylogeny and Biogeography of Gibbons: A Dispersal-Vicariance Analysis. International Journal of Primatology. 27, 699–712 (2006). https://doi.org/10.1007/s10764-006-9044-1.
14.
HIJMANS, R.J., GRAHAM, C.H.: The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology. 12, 2272–2281 (2006). https://doi.org/10.1111/j.1365-2486.2006.01256.x.
15.
Phillips, S.J., Anderson, R.P., Schapire, R.E.: Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190, 231–259 (2006). https://doi.org/10.1016/j.ecolmodel.2005.03.026.
16.
Pough, F. Harvey: Herpetology. Prentice Hall, Upper Saddle River, NJ (1998).
17.
Adler, Kraig, Halliday, Tim: The new encyclopedia of reptiles and amphibians. Oxford University Press, Oxford (2002).
18.
Duellman, William Edward, Trueb, Linda: Biology of amphibians. McGraw-Hill, London (1986).
19.
Liem, Karel F.: Functional anatomy of the vertebrates: an evolutionary perspective. Brooks/Cole-Thomson Learning, Belmont, Calif (2001).
20.
Biju, S.D., Bossuyt, F.: New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature. 425, 711–714 (2003). https://doi.org/10.1038/nature02019.
21.
Bossuyt, F., Milinkovitch, M.C.: From the Cover: Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences. 97, 6585–6590 (2000). https://doi.org/10.1073/pnas.97.12.6585.
22.
Bossuyt, F., Brown, R., Hillis, D., Cannatella, D., Milinkovitch, M.: Phylogeny and Biogeography of a Cosmopolitan Frog Radiation: Late Cretaceous Diversification Resulted in Continent-Scale Endemism in the Family Ranidae. Systematic Biology. 55, 579–594 (2006). https://doi.org/10.1080/10635150600812551.
23.
Evans, S.E., Jones, M.E.H., Krause, D.W.: A giant frog with South American affinities from the Late Cretaceous of Madagascar. Proceedings of the National Academy of Sciences. 105, 2951–2956 (2008). https://doi.org/10.1073/pnas.0707599105.
24.
Vences, M.: Origin of Madagascar’s extant fauna: A perspective from amphibians, reptiles and other non‐flying vertebrates. Italian Journal of Zoology. 71, 217–228 (2004). https://doi.org/10.1080/11250000409356639.
25.
Anne D. Yoder and Michael D. Nowak: Has Vicariance or Dispersal Been the Predominant Biogeographic Force in Madagascar? Only Time Will Tell. Annual Review of Ecology, Evolution, and Systematics. 37, (2006).
26.
Roelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K., Moriau, L., Bossuyt, F.: Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences. 104, 887–892 (2007). https://doi.org/10.1073/pnas.0608378104.
27.
David Marjanović and Michel Laurin: Fossils, Molecules, Divergence Times, and the Origin of Lissamphibians. Systematic Biology. 56, (2007).
28.
Apesteguía, S., Jones, M.E.H.: A Late Cretaceous "tuatara” (Lepidosauria: Sphenodontinae) from South America. Cretaceous Research. 34, 154–160 (2012). https://doi.org/10.1016/j.cretres.2011.10.014.
29.
EVANS, S.E.: At the feet of the dinosaurs: the early history and radiation of lizards. Biological Reviews. 78, 513–551 (2003). https://doi.org/10.1017/S1464793103006134.
30.
Evans, S.E., Jones, M.E.H.: The Origin, Early History and Diversification of Lepidosauromorph Reptiles. In: New Aspects of Mesozoic Biodiversity. pp. 27–44. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10311-7_2.
31.
KEQIN, G., NORELL, M.A.: Taxonomic composition and systematics of late cretaceous lizard assemblages from Ukhaa Tolgod and adjacent  localities, Mongolian Gobi desert. Bulletin of the American Museum of Natural History. 249, 1–118 (2000). https://doi.org/10.1206/0003-0090(2000)249<0001:TCASOL>2.0.CO;2.
32.
Adler, Kraig, Halliday, Tim: The new encyclopedia of reptiles and amphibians. Oxford University Press, Oxford (2002).
33.
Jones, M.E.H., Tennyson, A.J.D., Worthy, J.P., Evans, S.E., Worthy, T.H.: A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (Sphenodon). Proceedings of the Royal Society B: Biological Sciences. 276, 1385–1390 (2009). https://doi.org/10.1098/rspb.2008.1785.
34.
J. Robert Macey, James A. Schulte, II, Allan Larson, Natalia B. Ananjeva, Yuezhao Wang, Rohan Pethiyagoda, Nasrullah Rastegar-Pouyani and Theodore J. Papenfuss: Evaluating Trans-Tethys Migration: An Example Using Acrodont Lizard Phylogenetics. Systematic Biology. 49, (2000).
35.
Zug, George R.: Herpetology: an introductory biology of amphibians and reptiles. Academic Press, San Diego (1993).
36.
Kupfer, A., Müller, H., Antoniazzi, M.M., Jared, C., Greven, H., Nussbaum, R.A., Wilkinson, M.: Parental investment by skin feeding in a caecilian amphibian. Nature. 440, 926–929 (2006). https://doi.org/10.1038/nature04403.
37.
Roelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K., Moriau, L., Bossuyt, F.: Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences. 104, 887–892 (2007). https://doi.org/10.1073/pnas.0608378104.
38.
GOWER, D.J., GIRI, V., DHARNE, M.S., SHOUCHE, Y.S.: Frequency of independent origins of viviparity among caecilians (Gymnophiona): evidence from the first ‘live-bearing’ Asian amphibian. Journal of Evolutionary Biology. 21, 1220–1226 (2008). https://doi.org/10.1111/j.1420-9101.2008.01577.x.
39.
GOWER, D.J., WILKINSON, M.: Conservation Biology of Caecilian Amphibians. Conservation Biology. 19, 45–55 (2005). https://doi.org/10.1111/j.1523-1739.2005.00589.x.
40.
WILKINSON, M., SAN MAURO, D., SHERRATT, E., GOWER, D.J.: A nine-family classification of caecilians (Amphibia: Gymnophiona). Zootaxa. 2874, (2011). https://doi.org/10.11646/zootaxa.2874.1.3.
41.
WILKINSON, M.: Comparative morphology and evolution of the lungless caecilianAtretochoana eiselti(Taylor) (Amphibia: Gymnophiona: Typhlonectidae). Biological Journal of the Linnean Society. 62, 39–109 (1997). https://doi.org/10.1006/bijl.1997.0143.
42.
Ole Seehausen: African Cichlid Fish: A Model System in Adaptive Radiation Research. Proceedings: Biological Sciences. 273, (2006).
43.
Kocher, T.D.: Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics. 5, 288–298 (2004). https://doi.org/10.1038/nrg1316.
44.
Schluter, Dolph: The ecology of adaptive radiation. Oxford University Press, Oxford (2000).
45.
Schliewen, U.K., Tautz, D., Pääbo, S.: Sympatric speciation suggested by monophyly of crater lake cichlids. Nature. 368, 629–632 (1994). https://doi.org/10.1038/368629a0.
46.
Joyce, D.A., Lunt, D.H., Bills, R., Turner, G.F., Katongo, C., Duftner, N., Sturmbauer, C., Seehausen, O.: An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature. 435, 90–95 (2005). https://doi.org/10.1038/nature03489.
47.
Day, J.J., Cotton, J.A., Barraclough, T.G.: Tempo and Mode of Diversification of Lake Tanganyika Cichlid Fishes. PLoS ONE. 3, (2008). https://doi.org/10.1371/journal.pone.0001730.
48.
Joyce, D.A., Lunt, D.H., Genner, M.J., Turner, G.F., Bills, R., Seehausen, O.: Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology. 21, R108–R109 (2011). https://doi.org/10.1016/j.cub.2010.11.029.
49.
Verheyen, E.: Origin of the Superflock of Cichlid Fishes from Lake Victoria, East Africa. Science. 300, 325–329 (2003). https://doi.org/10.1126/science.1080699.
50.
Albertson, R.C., Markert, J.A., Danley, P.D., Kocher, T.D.: Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences. 96, 5107–5110 (1999). https://doi.org/10.1073/pnas.96.9.5107.
51.
Genner, M.J., Seehausen, O., Lunt, D.H., Joyce, D.A., Shaw, P.W., Carvalho, G.R., Turner, G.F.: Age of Cichlids: New Dates for Ancient Lake Fish Radiations. Molecular Biology and Evolution. 24, 1269–1282 (2007). https://doi.org/10.1093/molbev/msm050.
52.
Harshman, J., Braun, E.L., Braun, M.J., Huddleston, C.J., Bowie, R.C.K., Chojnowski, J.L., Hackett, S.J., Han, K.-L., Kimball, R.T., Marks, B.D., Miglia, K.J., Moore, W.S., Reddy, S., Sheldon, F.H., Steadman, D.W., Steppan, S.J., Witt, C.C., Yuri, T.: Phylogenomic evidence for multiple losses of flight in ratite birds. Proceedings of the National Academy of Sciences. 105, 13462–13467 (2008). https://doi.org/10.1073/pnas.0803242105.
53.
Feduccia, A.: ‘Big bang’ for tertiary birds? Trends in Ecology & Evolution. 18, 172–176 (2003). https://doi.org/10.1016/S0169-5347(03)00017-X.
54.
Cooper, A.: Mass Survival of Birds Across the Cretaceous- Tertiary Boundary: Molecular Evidence. Science. 275, 1109–1113 (1997). https://doi.org/10.1126/science.275.5303.1109.
55.
Longrich, N.R., Tokaryk, T., Field, D.J.: Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proceedings of the National Academy of Sciences. 108, 15253–15257 (2011). https://doi.org/10.1073/pnas.1110395108.
56.
Roelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K., Moriau, L., Bossuyt, F.: Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences. 104, 887–892 (2007). https://doi.org/10.1073/pnas.0608378104.
57.
Lerner, H.R.L., Meyer, M., James, H.F., Hofreiter, M., Fleischer, R.C.: Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers. Current Biology. 21, 1838–1844 (2011). https://doi.org/10.1016/j.cub.2011.09.039.
58.
Ericson, P.G.P., Anderson, C.L., Britton, T., Elzanowski, A., Johansson, U.S., Kallersjo, M., Ohlson, J.I., Parsons, T.J., Zuccon, D., Mayr, G.: Diversification of Neoaves: integration of molecular sequence data and fossils. Biology Letters. 2, 543–547 (2006). https://doi.org/10.1098/rsbl.2006.0523.
59.
Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A.: The delayed rise of present-day mammals. Nature. 446, 507–512 (2007). https://doi.org/10.1038/nature05634.
60.
Roos, J., Aggarwal, R.K., Janke, A.: Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous–Tertiary boundary. Molecular Phylogenetics and Evolution. 45, 663–673 (2007). https://doi.org/10.1016/j.ympev.2007.06.018.
61.
Peter R. Grant and B. Rosemary Grant: Adaptive Radiation of Darwin’s Finches: Recent data help explain how this famous group of Galápagos birds evolved, although gaps in our understanding remain. American Scientist. 90, (2002).
62.
Lerner, H.R.L., Meyer, M., James, H.F., Hofreiter, M., Fleischer, R.C.: Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers. Current Biology. 21, 1838–1844 (2011). https://doi.org/10.1016/j.cub.2011.09.039.
63.
Adkins, R.M., Honeycutt, R.L.: Molecular phylogeny of the superorder Archonta. Proceedings of the National Academy of Sciences. 88, 10317–10321 (1991). https://doi.org/10.1073/pnas.88.22.10317.
64.
Allard, M.: Support for Interordinal Eutherian Relationships with an Emphasis on Primates and Their Archontan Relatives. Molecular Phylogenetics and Evolution. 5, 78–88 (1996). https://doi.org/10.1006/mpev.1996.0007.
65.
Loren K. Ammerman and David M. Hillis: A Molecular Test of Bat Relationships: Monophyly or Diphyly? Systematic Biology. Vol. 41, 222–232.
66.
Robert J. Asher, Jonathan H. Geisler and Marcelo R. Sánchez-Villagra: Morphology, Paleontology, and Placental Mammal Phylogeny. Systematic Biology. Vol. 57, 311–317.
67.
General Anthropology. General Anthropology Bulletin of the General Anthropology Division. 8, 1–16 (2002). https://doi.org/10.1525/ga.2002.8.2.1.
68.
Kay, R.F., Thewissen, J.G.M., Yoder, A.D.: Cranial anatomy ofIgnacius graybullianus and the affinities of the Plesiadapiformes. American Journal of Physical Anthropology. 89, 477–498 (1992). https://doi.org/10.1002/ajpa.1330890409.
69.
Kriegs, J.O., Churakov, G., Kiefmann, M., Jordan, U., Brosius, J., Schmitz, J.: Retroposed Elements as Archives for the Evolutionary History of Placental Mammals. PLoS Biology. 4, (2006). https://doi.org/10.1371/journal.pbio.0040091.
70.
Lin, Y.-H., Penny, D.: Implications for Bat Evolution from Two New Complete Mitochondrial Genomes. Molecular Biology and Evolution. 18, 684–688 (2001). https://doi.org/10.1093/oxfordjournals.molbev.a003850.
71.
Madsen, O., Scally, M., Douady, C.J., Kao, D.J., DeBry, R.W., Adkins, R., Amrine, H.M., Stanhope, M.J., de Jong, W.W., Springer, M.S.: Parallel adaptive radiations in two major clades of placental mammals : Article : Nature. Nature. 409, 610–614 (2001). https://doi.org/10.1038/35054544.
72.
Miyamoto, M.: A Congruence Study of Molecular and Morphological Data for Eutherian Mammals. Molecular Phylogenetics and Evolution. 6, 373–390 (1996). https://doi.org/10.1006/mpev.1996.0087.
73.
M. Miyamoto, Calvin A. Porter, Morr, M.: c- Myc Gene Sequences and the Phylogeny of Bats and Other Eutherian Mammals. Systematic Biology. 49, 501–514 (2000). https://doi.org/10.1080/10635159950127367.
74.
Murphy, W.J.: Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics. Science. 294, 2348–2351 (2001). https://doi.org/10.1126/science.1067179.
75.
NOVACEK, M.J., WYSS, A.R.: HIGHER-LEVEL RELATIONSHIPS OF THE RECENT EUTHERIAN ORDERS: MORPHOLOGICAL EVIDENCE. Cladistics. 2, 257–287 (1986). https://doi.org/10.1111/j.1096-0031.1986.tb00463.x.
76.
J. D. Pettigrew, B. G. M. Jamieson, S. K. Robson, L. S. Hall, K. I. McAnally and H. M. Cooper: Phylogenetic Relations Between Microbats, Megabats and Primates (Mammalia: Chiroptera and Primates). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Vol. 325, 489–559.
77.
SPRINGER, M.: Molecules consolidate the placental mammal tree. Trends in Ecology & Evolution. 19, 430–438 (2004). https://doi.org/10.1016/j.tree.2004.05.006.
78.
Springer, M.S., Murphy, W.J.: Mammalian evolution and biomedicine: new views from phylogeny. Biological Reviews. 82, 375–392 (2007). https://doi.org/10.1111/j.1469-185X.2007.00016.x.
79.
Springer, M., Meredith, R., Eizirik, E., Teeling, E., Murphy, W.: Morphology and Placental Mammal Phylogeny. Systematic Biology. 57, 499–503 (2008). https://doi.org/10.1080/10635150802164504.
80.
Emma C. Teeling, Ole Madsen, Ronald A. Van Den Bussche, Wilfried W. de Jong, Michael J. Stanhope and Mark S. Springer: Microbat Paraphyly and the Convergent Evolution of a Key Innovation in Old World Rhinolophoid Microbats. Proceedings of the National Academy of Sciences of the United States of America. Vol. 99, 1431–1436.
81.
Teeling, E.C.: A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record. Science. 307, 580–584 (2005). https://doi.org/10.1126/science.1105113.
82.
Van Den Bussche, R.: Characterization and Phylogenetic Utility of the Mammalian Protamine P1 Gene. Molecular Phylogenetics and Evolution. 22, 333–341 (2002). https://doi.org/10.1006/mpev.2001.1051.
83.
Ronald A. van Den Bussche and Steven R. Hoofer: Phylogenetic Relationships among Recent Chiropteran Families and the Importance of Choosing Appropriate Out-Group Taxa. Journal of Mammalogy. 85, (2004).
84.
Karen E. Sears: Constraints on the Morphological Evolution of Marsupial Shoulder Girdles. Evolution. Vol. 58, 2353–2370.
85.
Jason A. Lillegraven: Biological Considerations of the Marsupial-Placental Dichotomy. Evolution. Vol. 29, 707–722.
86.
Szalay, F.S.: Paleobiogeography and metatherian evolution. In: Evolutionary history of the marsupials and an analysis of osteological characters. pp. 407–428. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511565571.010.
87.
Nilsson, M.A., Arnason, U., Spencer, P.B.S., Janke, A.: Marsupial relationships and a timeline for marsupial radiation in South Gondwana. Gene. 340, 189–196 (2004). https://doi.org/10.1016/j.gene.2004.07.040.
88.
Nunn, C.L., Smith, K.K.: Statistical Analyses of Developmental Sequences: The Craniofacial Region in Marsupial and Placental Mammals. The American Naturalist. 152, 82–101 (1998). https://doi.org/10.1086/286151.
89.
Vera Weisbecker, Anjali Goswami, Stephen Wroe and Marcelo R. Sánchez-Villagra: Ossification Heterochrony in the Therian Postcranial Skeleton and the Marsupial-Placental Dichotomy. Evolution. Vol. 62, 2027–2041.
90.
Van Valkenburgh, B.: Deja vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology. 47, 147–163 (2007). https://doi.org/10.1093/icb/icm016.
91.
Blaire van Valkenburgh: Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences. 27, 51–63 (1999).
92.
Ricklefs, Robert E., Schluter, Dolph: Historical Diversity Patterns in North American Large Herbivores and Carnivores. In: Species diversity in ecological communities: historical and geographical perspectives. pp. 330–340. University of Chicago Press, Chicago (1993).
93.
Goswami, A., Friscia, A. eds: Carnivoran Evolution: new views on phylogeny, form and function. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9781139193436.
94.
Goswami, Anjali, Friscia, Anthony: Carnivoran evolution: new views on phylogeny, form, and function. Cambridge University Press, Cambridge (2010).
95.
Gina D. Wesley-Hunt: The Morphological Diversification of Carnivores in North America. Paleobiology. Vol. 31, 35–55.
96.
Rose, Kenneth David, Archibald, J. David: The rise of placental mammals: origins and relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore, Md (2005).
97.
Scott, Kathleen M., Jacobs, Louis L., Janis, Christine M., Gunnell, Gregg F., Uhen, Mark D.: Evolution of tertiary mammals of North America. Cambridge University Press, Cambridge (1998).
98.
Pasquale Raia and Shai Meiri: The Island Rule in Large Mammals: Paleontology Meets Ecology. Evolution. Vol. 60, 1731–1742.
99.
Lister, A.M.: Rapid dwarfing of red deer on Jersey in the Last Interglacial. Nature. 342, 539–542 (1989). https://doi.org/10.1038/342539a0.
100.
Stephen Jay Gould and Niles Eldredge: Punctuated Equilibria: The Tempo and Mode of Evolution Reconsidered. Paleobiology. 3, (1977).
101.
Lister, A.M.: The Origin and Evolution of the Woolly Mammoth. Science. 294, 1094–1097 (2001). https://doi.org/10.1126/science.1056370.
102.
Lister, Adrian, Bahn, Paul G.: Mammoths: giants of the ice age. University of California Press, Berkeley (2007).
103.
Fleagle, J.G.: Primate adaptation and evolution. Elsevier/Academic Press, Amsterdam (2013).
104.
Aiello, Leslie, Dean, Christopher: An introduction to human evolutionary anatomy. Academic Press, London (1990).
105.
An Introduction to Human Evolutionary Anatomy. Elsevier (2002).
106.
Dunbar, R. I. M., Barrett, Louise, British Broadcasting Corporation: Cousins: our primate relatives. BBC Worldwide, London (2000).
107.
Franzen, J.L., Gingerich, P.D., Habersetzer, J., Hurum, J.H., von Koenigswald, W., Smith, B.H.: Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology. PLoS ONE. 4, (2009). https://doi.org/10.1371/journal.pone.0005723.
108.
Groves, Colin P.: Primate taxonomy. Smithsonian Institution Press, Washington, DC (2001).
109.
Mittermeier, R.A., Wallis, J., Rylands, A.B., Ganzhorn, J.U., Oates, J.F., Williamson, E.A., Palacios, E., Heymann, E.W., Kierulff, M.C.M., Yongcheng, L., Supriatna, J., Roos, C., Walker, S., Cortés-Ortiz, L., Schwitzer, C.: Primates in Peril: The World’s 25 Most Endangered Primates 2008–2010. Primate Conservation. 24, 1–57 (2009).
110.
Chatterjee, H.J., Ho, S.Y., Barnes, I., Groves, C.: Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evolutionary Biology. 9, (2009). https://doi.org/10.1186/1471-2148-9-259.