1
Alberts, Bruce. Molecular biology of the cell. Reference ed., 5th ed. Abingdon: : Garland Science 2008.
2
Pollard, Thomas D., Earnshaw, William C. Cell biology. 2nd ed. Philadelphia: : Saunders/Elsevier 2008.
3
Lodish, Harvey F. Molecular cell biology. 6th ed. Basingstoke: : Palgrave Macmillan 2007.
4
Alberts, Bruce. Essential cell biology. 3rd ed. London: : Garland Science 2010.
5
iBioSeminars: Free biology videos online.
6
Giepmans BNG. The Fluorescent Toolbox for Assessing Protein Location and Function. Science 2006;312:217–24. doi:10.1126/science.1124618
7
North AJ. Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. The Journal of Cell Biology 2006;172:9–18. doi:10.1083/jcb.200507103
8
Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nature Methods 2005;2:905–9. doi:10.1038/nmeth819
9
Molecular Probes®, Labeling & Detection Technologies | Life Technologies.
11
Pelkmans L. Using Cell-to-Cell Variability--A New Era in Molecular Biology. Science 2012;336:425–6. doi:10.1126/science.1222161
12
Larson DR, Zenklusen D, Wu B, et al. Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science 2011;332:475–8. doi:10.1126/science.1202142
13
Raj A, van Oudenaarden A. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell 2008;135:216–26. doi:10.1016/j.cell.2008.09.050
14
Brock A, Chang H, Huang S. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nature Reviews Genetics 2009;10:336–42. doi:10.1038/nrg2556
15
Lionnet T, Singer RH. Transcription goes digital. EMBO reports 2012;13:313–21. doi:10.1038/embor.2012.31
16
Spencer SL, Gaudet S, Albeck JG, et al. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009;459:428–32. doi:10.1038/nature08012
17
Morgan, David Owen. The cell cycle: principles of control. London: : New Science Press in association with Oxford University Press and Sinauer Associates 2007.
18
Watson, James D. Molecular biology of the gene. 6th ed. Cold Spring Harbor, N.Y.: : Pearson/Benjamin Cummings 2008.
19
Alberts, Bruce. Molecular biology of the cell. Reference ed., 5th ed. Abingdon: : Garland Science 2008.
20
Murray, Andrew Wood, Hunt, Tim. The cell cycle: an introduction. New York: : Oxford University Press 1993.
21
Evans T, Rosenthal ET, Youngblom J, et al. Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 1983;33:389–96. doi:10.1016/0092-8674(83)90420-8
22
Hartwell LH. Twenty-five years of cell cycle genetics. Genetics 1991;129:975–80.
23
Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Current Opinion in Cell Biology 2007;19:238–45. doi:10.1016/j.ceb.2007.02.009
24
Nasmyth K, Schleiffer A. From a single double helix to paired double helices and back. Philosophical Transactions of the Royal Society B: Biological Sciences 2004;359:99–108. doi:10.1098/rstb.2003.1417
25
Ted A. Weinert and Leland H. Hartwell. The RAD9 Gene Controls the Cell Cycle Response to DNA Damage in Saccharomyces cerevisiae. Science 1988;241:317–22.
26
Howell BJ, Hoffman DB, Fang G, et al. Visualization of Mad2 Dynamics at Kinetochores, along Spindle Fibers, and at Spindle Poles in Living Cells. The Journal of Cell Biology 2000;150:1233–50. doi:10.1083/jcb.150.6.1233
27
Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology 2007;8:379–93. doi:10.1038/nrm2163
28
Alberts, Bruce. Molecular biology of the cell. Reference ed., 5th ed. Abingdon: : Garland Science 2008.
29
Nature Publishing Group. Encyclopedia of life sciences. Basingstoke: : Macmillan 2001. http://www.els.net
30
Milestones timeline : Nature Milestones in Cytoskeleton.
32
Windoffer R, Beil M, Magin TM, et al. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. The Journal of Cell Biology 2011;194:669–78. doi:10.1083/jcb.201008095
33
Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic ‘network of networks’. Nature Reviews Molecular Cell Biology 2011;12:695–708. doi:10.1038/nrm3207
34
Ridley AJ. Life at the Leading Edge. Cell 2011;145:1012–22. doi:10.1016/j.cell.2011.06.010
35
Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nature Reviews Microbiology 2010;11:237–51. doi:10.1038/nrm2867
36
Pollard TD, Borisy GG. Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell 2003;112:453–65. doi:10.1016/S0092-8674(03)00120-X
37
Chhabra ES, Higgs HN. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biology 2007;9:1110–21. doi:10.1038/ncb1007-1110
38
Insall RH, Machesky LM. Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks. Developmental Cell 2009;17:310–22. doi:10.1016/j.devcel.2009.08.012
39
VANTROYS M, HUYCK L, LEYMAN S, et al. Ins and outs of ADF/cofilin activity and regulation. European Journal of Cell Biology 2008;87:649–67. doi:10.1016/j.ejcb.2008.04.001
40
Herrmann H, Strelkov SV, Burkhard P, et al. Intermediate filaments: primary determinants of cell architecture and plasticity. Journal of Clinical Investigation 2009;119:1772–83. doi:10.1172/JCI38214
41
Goldman RD, Grin B, Mendez MG, et al. Intermediate filaments: versatile building blocks of cell structure. Current Opinion in Cell Biology 2008;20:28–34. doi:10.1016/j.ceb.2007.11.003
42
Herrmann H, Bär H, Kreplak L, et al. Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology 2007;8:562–73. doi:10.1038/nrm2197
43
Godsel LM, Hobbs RP, Green KJ. Intermediate filament assembly: dynamics to disease. Trends in Cell Biology 2008;18:28–37. doi:10.1016/j.tcb.2007.11.004
44
Delorme V, Machacek M, DerMardirossian C, et al. Cofilin Activity Downstream of Pak1 Regulates Cell Protrusion Efficiency by Organizing Lamellipodium and Lamella Actin Networks. Developmental Cell 2007;13:646–62. doi:10.1016/j.devcel.2007.08.011
45
Symons MH. Control of actin polymerization in live and permeabilized fibroblasts. The Journal of Cell Biology 1991;114:503–13. doi:10.1083/jcb.114.3.503
46
Miyoshi T, Tsuji T, Higashida C, et al. Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. The Journal of Cell Biology 2006;175:947–55. doi:10.1083/jcb.200604176
47
Lee C-H, Coulombe PA. Self-organization of keratin intermediate filaments into cross-linked networks. The Journal of Cell Biology 2009;186:409–21. doi:10.1083/jcb.200810196
48
Colakoglu G, Brown A. Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing. The Journal of Cell Biology 2009;185:769–77. doi:10.1083/jcb.200809166
49
Akin O, Mullins RD. Capping Protein Increases the Rate of Actin-Based Motility by Promoting Filament Nucleation by the Arp2/3 Complex. Cell 2008;133:841–51. doi:10.1016/j.cell.2008.04.011
50
Chen C-Y, Chi Y-H, Mutalif RA, et al. Accumulation of the Inner Nuclear Envelope Protein Sun1 Is Pathogenic in Progeric and Dystrophic Laminopathies. Cell 2012;149:565–77. doi:10.1016/j.cell.2012.01.059
51
Chang L, Barlan K, Chou Y-H, et al. The dynamic properties of intermediate filaments during organelle transport. Journal of Cell Science 2009;122:2914–23. doi:10.1242/jcs.046789
52
Helfand BT, Mendez MG, Murthy SNP, et al. Vimentin organization modulates the formation of lamellipodia. Molecular Biology of the Cell 2011;22:1274–89. doi:10.1091/mbc.E10-08-0699
53
Ura S, Pollitt AY, Veltman DM, et al. Pseudopod Growth and Evolution during Cell Movement Is Controlled through SCAR/WAVE Dephosphorylation. Current Biology 2012;22:553–61. doi:10.1016/j.cub.2012.02.020
54
Siton O, Ideses Y, Albeck S, et al. Cortactin Releases the Brakes in Actin- Based Motility by Enhancing WASP-VCA Detachment from Arp2/3 Branches. Current Biology 2011;21:2092–7. doi:10.1016/j.cub.2011.11.010
55
Suraneni P, Rubinstein B, Unruh JR, et al. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. The Journal of Cell Biology 2012;197:239–51. doi:10.1083/jcb.201112113
56
Bordeleau F, Myrand Lapierre M-E, Sheng Y, et al. Keratin 8/18 Regulation of Cell Stiffness-Extracellular Matrix Interplay through Modulation of Rho-Mediated Actin Cytoskeleton Dynamics. PLoS ONE 2012;7. doi:10.1371/journal.pone.0038780
57
DANIAL N. Cell DeathCritical Control Points. Cell 2004;116:205–19. doi:10.1016/S0092-8674(04)00046-7
58
Pop C, Salvesen GS. Human Caspases: Activation, Specificity, and Regulation. Journal of Biological Chemistry 2009;284:21777–81. doi:10.1074/jbc.R800084200
59
Chipuk JE, Moldoveanu T, Llambi F, et al. The BCL-2 Family Reunion. Molecular Cell 2010;37:299–310. doi:10.1016/j.molcel.2010.01.025
60
Fuchs Y, Steller H. Programmed Cell Death in Animal Development and Disease. Cell 2011;147:742–58. doi:10.1016/j.cell.2011.10.033
61
Liu X, Kim CN, Yang J, et al. Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c. Cell 1996;86:147–57. doi:10.1016/S0092-8674(00)80085-9
62
DATTA S. Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery. Cell 1997;91:231–41. doi:10.1016/S0092-8674(00)80405-5
63
Brunet A, Bonni A, Zigmond MJ, et al. Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell 1999;96:857–68. doi:10.1016/S0092-8674(00)80595-4
64
Whitfield J, Neame SJ, Paquet L, et al. Dominant-Negative c-Jun Promotes Neuronal Survival by Reducing BIM Expression and Inhibiting Mitochondrial Cytochrome c Release. Neuron 2001;29:629–43. doi:10.1016/S0896-6273(01)00239-2
65
Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005;435:677–81. doi:10.1038/nature03579
66
Wright KM, Vaughn AE, Deshmukh M. Apoptosome dependent caspase-3 activation pathway is non-redundant and necessary for apoptosis in sympathetic neurons. Cell Death and Differentiation 2006;14:625–33. doi:10.1038/sj.cdd.4402024
67
Hübner A, Barrett T, Flavell RA, et al. Multisite Phosphorylation Regulates Bim Stability and Apoptotic Activity. Molecular Cell 2008;30:415–25. doi:10.1016/j.molcel.2008.03.025
68
Gavathiotis E, Suzuki M, Davis ML, et al. BAX activation is initiated at a novel interaction site. Nature 2008;455:1076–81. doi:10.1038/nature07396
69
Johnson CH. Circadian clocks and cell division. Cell Cycle 2010;9:3864–73. doi:10.4161/cc.9.19.13205
70
Vatine G, Vallone D, Gothilf Y, et al. It’s time to swim! Zebrafish and the circadian clock. FEBS Letters 2011;585:1485–94. doi:10.1016/j.febslet.2011.04.007
71
Tamai TK, Young LC, Cox CA, et al. Light Acts on the Zebrafish Circadian Clock to Suppress Rhythmic Mitosis and Cell Proliferation. Journal of Biological Rhythms 2012;27:226–36. doi:10.1177/0748730412440861
72
Idda ML, Kage E, Lopez-Olmeda JF, et al. Circadian Timing of Injury-Induced Cell Proliferation in Zebrafish. PLoS ONE 2012;7. doi:10.1371/journal.pone.0034203
73
Dong G, Yang Q, Wang Q, et al. Elevated ATPase Activity of KaiC Applies a Circadian Checkpoint on Cell Division in Synechococcus elongatus. Cell 2010;140:529–39. doi:10.1016/j.cell.2009.12.042
74
Dickmeis T, Lahiri K, Nica G, et al. Glucocorticoids Play a Key Role in Circadian Cell Cycle Rhythms. PLoS Biology 2007;5. doi:10.1371/journal.pbio.0050078
75
Dekens MPS, Santoriello C, Vallone D, et al. Light Regulates the Cell Cycle in Zebrafish. Current Biology 2003;13:2051–7. doi:10.1016/j.cub.2003.10.022
76
Matsuo T. Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo. Science 2003;302:255–9. doi:10.1126/science.1086271
77
Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011;479:232–6. doi:10.1038/nature10600
78
Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nature Reviews Molecular Cell Biology 2007;8:715–22. doi:10.1038/nrm2242
79
Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell 2008;134:657–67. doi:10.1016/j.cell.2008.06.049
80
Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007;445:656–60. doi:10.1038/nature05529
81
Narita M, Lowe SW. Senescence comes of age. Nature Medicine 2005;11:920–2. doi:10.1038/nm0905-920
82
Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005;436:1048–52. doi:10.1038/nature03836