1.
Alberts, Bruce. Molecular biology of the cell. (Garland Science, 2008).
2.
Pollard, Thomas D. & Earnshaw, William C. Cell biology. (Saunders/Elsevier, 2008).
3.
Lodish, Harvey F. Molecular cell biology. (Palgrave Macmillan, 2007).
4.
Alberts, Bruce. Essential cell biology. (Garland Science, 2010).
5.
iBioSeminars: Free biology videos online.
6.
Giepmans, B. N. G. The Fluorescent Toolbox for Assessing Protein Location and Function. Science 312, 217–224 (2006).
7.
North, A. J. Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. The Journal of Cell Biology 172, 9–18 (2006).
8.
Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods 2, 905–909 (2005).
9.
Molecular Probes.
10.
Nikon MicroscopyU.
11.
Pelkmans, L. Using Cell-to-Cell Variability--A New Era in Molecular Biology. Science 336, 425–426 (2012).
12.
Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A. & Singer, R. H. Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science 332, 475–478 (2011).
13.
Raj, A. & van Oudenaarden, A. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell 135, 216–226 (2008).
14.
Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nature Reviews Genetics 10, 336–342 (2009).
15.
Lionnet, T. & Singer, R. H. Transcription goes digital. EMBO reports 13, 313–321 (2012).
16.
Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).
17.
Morgan, David Owen. The cell cycle: principles of control. vol. Primers in biology (New Science Press in association with Oxford University Press and Sinauer Associates, 2007).
18.
Watson, James D. Molecular biology of the gene. (Pearson/Benjamin Cummings, 2008).
19.
Alberts, Bruce. Molecular biology of the cell. (Garland Science, 2008).
20.
Murray, Andrew Wood & Hunt, Tim. The cell cycle: an introduction. (Oxford University Press, 1993).
21.
Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396 (1983).
22.
Hartwell, L. H. Twenty-five years of cell cycle genetics. Genetics 129, 975–980 (1991).
23.
Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Current Opinion in Cell Biology 19, 238–245 (2007).
24.
Nasmyth, K. & Schleiffer, A. From a single double helix to paired double helices and back. Philosophical Transactions of the Royal Society B: Biological Sciences 359, 99–108 (2004).
25.
Ted A. Weinert and Leland H. Hartwell. The RAD9 Gene Controls the Cell Cycle Response to DNA Damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988).
26.
Howell, B. J., Hoffman, D. B., Fang, G., Murray, A. W. & Salmon, E. D. Visualization of Mad2 Dynamics at Kinetochores, along Spindle Fibers, and at Spindle Poles in Living Cells. The Journal of Cell Biology 150, 1233–1250 (2000).
27.
Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology 8, 379–393 (2007).
28.
Alberts, Bruce. Molecular biology of the cell. (Garland Science, 2008).
29.
Nature Publishing Group. Encyclopedia of life sciences. (Macmillan, 2001).
30.
Milestones timeline : Nature Milestones in Cytoskeleton.
31.
Julie Theriot.
32.
Windoffer, R., Beil, M., Magin, T. M. & Leube, R. E. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. The Journal of Cell Biology 194, 669–678 (2011).
33.
Simon, D. N. & Wilson, K. L. The nucleoskeleton as a genome-associated dynamic ‘network of networks’. Nature Reviews Molecular Cell Biology 12, 695–708 (2011).
34.
Ridley, A. J. Life at the Leading Edge. Cell 145, 1012–1022 (2011).
35.
Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nature Reviews Microbiology 11, 237–251 (2010).
36.
Pollard, T. D. & Borisy, G. G. Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell 112, 453–465 (2003).
37.
Chhabra, E. S. & Higgs, H. N. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biology 9, 1110–1121 (2007).
38.
Insall, R. H. & Machesky, L. M. Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks. Developmental Cell 17, 310–322 (2009).
39.
VANTROYS, M. et al. Ins and outs of ADF/cofilin activity and regulation. European Journal of Cell Biology 87, 649–667 (2008).
40.
Herrmann, H., Strelkov, S. V., Burkhard, P. & Aebi, U. Intermediate filaments: primary determinants of cell architecture and plasticity. Journal of Clinical Investigation 119, 1772–1783 (2009).
41.
Goldman, R. D., Grin, B., Mendez, M. G. & Kuczmarski, E. R. Intermediate filaments: versatile building blocks of cell structure. Current Opinion in Cell Biology 20, 28–34 (2008).
42.
Herrmann, H., Bär, H., Kreplak, L., Strelkov, S. V. & Aebi, U. Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology 8, 562–573 (2007).
43.
Godsel, L. M., Hobbs, R. P. & Green, K. J. Intermediate filament assembly: dynamics to disease. Trends in Cell Biology 18, 28–37 (2008).
44.
Delorme, V. et al. Cofilin Activity Downstream of Pak1 Regulates Cell Protrusion Efficiency by Organizing Lamellipodium and Lamella Actin Networks. Developmental Cell 13, 646–662 (2007).
45.
Symons, M. H. Control of actin polymerization in live and permeabilized fibroblasts. The Journal of Cell Biology 114, 503–513 (1991).
46.
Miyoshi, T. et al. Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. The Journal of Cell Biology 175, 947–955 (2006).
47.
Lee, C.-H. & Coulombe, P. A. Self-organization of keratin intermediate filaments into cross-linked networks. The Journal of Cell Biology 186, 409–421 (2009).
48.
Colakoglu, G. & Brown, A. Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing. The Journal of Cell Biology 185, 769–777 (2009).
49.
Akin, O. & Mullins, R. D. Capping Protein Increases the Rate of Actin-Based Motility by Promoting Filament Nucleation by the Arp2/3 Complex. Cell 133, 841–851 (2008).
50.
Chen, C.-Y. et al. Accumulation of the Inner Nuclear Envelope Protein Sun1 Is Pathogenic in Progeric and Dystrophic Laminopathies. Cell 149, 565–577 (2012).
51.
Chang, L. et al. The dynamic properties of intermediate filaments during organelle transport. Journal of Cell Science 122, 2914–2923 (2009).
52.
Helfand, B. T. et al. Vimentin organization modulates the formation of lamellipodia. Molecular Biology of the Cell 22, 1274–1289 (2011).
53.
Ura, S. et al. Pseudopod Growth and Evolution during Cell Movement Is Controlled through SCAR/WAVE Dephosphorylation. Current Biology 22, 553–561 (2012).
54.
Siton, O. et al. Cortactin Releases the Brakes in Actin- Based Motility by Enhancing WASP-VCA Detachment from Arp2/3 Branches. Current Biology 21, 2092–2097 (2011).
55.
Suraneni, P. et al. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. The Journal of Cell Biology 197, 239–251 (2012).
56.
Bordeleau, F., Myrand Lapierre, M.-E., Sheng, Y. & Marceau, N. Keratin 8/18 Regulation of Cell Stiffness-Extracellular Matrix Interplay through Modulation of Rho-Mediated Actin Cytoskeleton Dynamics. PLoS ONE 7, (2012).
57.
DANIAL, N. Cell DeathCritical Control Points. Cell 116, 205–219 (2004).
58.
Pop, C. & Salvesen, G. S. Human Caspases: Activation, Specificity, and Regulation. Journal of Biological Chemistry 284, 21777–21781 (2009).
59.
Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. & Green, D. R. The BCL-2 Family Reunion. Molecular Cell 37, 299–310 (2010).
60.
Fuchs, Y. & Steller, H. Programmed Cell Death in Animal Development and Disease. Cell 147, 742–758 (2011).
61.
Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c. Cell 86, 147–157 (1996).
62.
DATTA, S. Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery. Cell 91, 231–241 (1997).
63.
Brunet, A. et al. Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell 96, 857–868 (1999).
64.
Whitfield, J., Neame, S. J., Paquet, L., Bernard, O. & Ham, J. Dominant-Negative c-Jun Promotes Neuronal Survival by Reducing BIM Expression and Inhibiting Mitochondrial Cytochrome c Release. Neuron 29, 629–643 (2001).
65.
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).
66.
Wright, K. M., Vaughn, A. E. & Deshmukh, M. Apoptosome dependent caspase-3 activation pathway is non-redundant and necessary for apoptosis in sympathetic neurons. Cell Death and Differentiation 14, 625–633 (2006).
67.
Hübner, A., Barrett, T., Flavell, R. A. & Davis, R. J. Multisite Phosphorylation Regulates Bim Stability and Apoptotic Activity. Molecular Cell 30, 415–425 (2008).
68.
Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008).
69.
Johnson, C. H. Circadian clocks and cell division. Cell Cycle 9, 3864–3873 (2010).
70.
Vatine, G., Vallone, D., Gothilf, Y. & Foulkes, N. S. It’s time to swim! Zebrafish and the circadian clock. FEBS Letters 585, 1485–1494 (2011).
71.
Tamai, T. K., Young, L. C., Cox, C. A. & Whitmore, D. Light Acts on the Zebrafish Circadian Clock to Suppress Rhythmic Mitosis and Cell Proliferation. Journal of Biological Rhythms 27, 226–236 (2012).
72.
Idda, M. L. et al. Circadian Timing of Injury-Induced Cell Proliferation in Zebrafish. PLoS ONE 7, (2012).
73.
Dong, G. et al. Elevated ATPase Activity of KaiC Applies a Circadian Checkpoint on Cell Division in Synechococcus elongatus. Cell 140, 529–539 (2010).
74.
Dickmeis, T. et al. Glucocorticoids Play a Key Role in Circadian Cell Cycle Rhythms. PLoS Biology 5, (2007).
75.
Dekens, M. P. S. et al. Light Regulates the Cell Cycle in Zebrafish. Current Biology 13, 2051–2057 (2003).
76.
Matsuo, T. Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo. Science 302, 255–259 (2003).
77.
Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).
78.
Serrano, M. & Blasco, M. A. Cancer and ageing: convergent and divergent mechanisms. Nature Reviews Molecular Cell Biology 8, 715–722 (2007).
79.
Krizhanovsky, V. et al. Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell 134, 657–667 (2008).
80.
Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).
81.
Narita, M. & Lowe, S. W. Senescence comes of age. Nature Medicine 11, 920–922 (2005).
82.
Sarin, K. Y. et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436, 1048–1052 (2005).