1.
Alberts, Bruce: Molecular biology of the cell. Garland Science, Abingdon (2008).
2.
Pollard, Thomas D., Earnshaw, William C.: Cell biology. Saunders/Elsevier, Philadelphia (2008).
3.
Lodish, Harvey F.: Molecular cell biology. Palgrave Macmillan, Basingstoke (2007).
4.
Alberts, Bruce: Essential cell biology. Garland Science, London (2010).
5.
iBioSeminars: Free biology videos online.
6.
Giepmans, B.N.G.: The Fluorescent Toolbox for Assessing Protein Location and Function. Science. 312, 217–224 (2006). https://doi.org/10.1126/science.1124618.
7.
North, A.J.: Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. The Journal of Cell Biology. 172, 9–18 (2006). https://doi.org/10.1083/jcb.200507103.
8.
Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nature Methods. 2, 905–909 (2005). https://doi.org/10.1038/nmeth819.
9.
Molecular Probes®, Labeling & Detection Technologies | Life Technologies.
11.
Pelkmans, L.: Using Cell-to-Cell Variability--A New Era in Molecular Biology. Science. 336, 425–426 (2012). https://doi.org/10.1126/science.1222161.
12.
Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., Singer, R.H.: Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science. 332, 475–478 (2011). https://doi.org/10.1126/science.1202142.
13.
Raj, A., van Oudenaarden, A.: Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell. 135, 216–226 (2008). https://doi.org/10.1016/j.cell.2008.09.050.
14.
Brock, A., Chang, H., Huang, S.: Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nature Reviews Genetics. 10, 336–342 (2009). https://doi.org/10.1038/nrg2556.
15.
Lionnet, T., Singer, R.H.: Transcription goes digital. EMBO reports. 13, 313–321 (2012). https://doi.org/10.1038/embor.2012.31.
16.
Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M., Sorger, P.K.: Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature. 459, 428–432 (2009). https://doi.org/10.1038/nature08012.
17.
Morgan, David Owen: The cell cycle: principles of control. New Science Press in association with Oxford University Press and Sinauer Associates, London (2007).
18.
Watson, James D.: Molecular biology of the gene. Pearson/Benjamin Cummings, Cold Spring Harbor, N.Y. (2008).
19.
Alberts, Bruce: Molecular biology of the cell. Garland Science, Abingdon (2008).
20.
Murray, Andrew Wood, Hunt, Tim: The cell cycle: an introduction. Oxford University Press, New York (1993).
21.
Evans, T., Rosenthal, E.T., Youngblom, J., Distel, D., Hunt, T.: Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell. 33, 389–396 (1983). https://doi.org/10.1016/0092-8674(83)90420-8.
22.
Hartwell, L.H.: Twenty-five years of cell cycle genetics. Genetics. 129, 975–980 (1991).
23.
Bartek, J., Lukas, J.: DNA damage checkpoints: from initiation to recovery or adaptation. Current Opinion in Cell Biology. 19, 238–245 (2007). https://doi.org/10.1016/j.ceb.2007.02.009.
24.
Nasmyth, K., Schleiffer, A.: From a single double helix to paired double helices and back. Philosophical Transactions of the Royal Society B: Biological Sciences. 359, 99–108 (2004). https://doi.org/10.1098/rstb.2003.1417.
25.
Ted A. Weinert and Leland H. Hartwell: The RAD9 Gene Controls the Cell Cycle Response to DNA Damage in Saccharomyces cerevisiae. Science. 241, 317–322 (1988).
26.
Howell, B.J., Hoffman, D.B., Fang, G., Murray, A.W., Salmon, E.D.: Visualization of Mad2 Dynamics at Kinetochores, along Spindle Fibers, and at Spindle Poles in Living Cells. The Journal of Cell Biology. 150, 1233–1250 (2000). https://doi.org/10.1083/jcb.150.6.1233.
27.
Musacchio, A., Salmon, E.D.: The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology. 8, 379–393 (2007). https://doi.org/10.1038/nrm2163.
28.
Alberts, Bruce: Molecular biology of the cell. Garland Science, Abingdon (2008).
29.
Nature Publishing Group: Encyclopedia of life sciences. Macmillan, Basingstoke (2001).
30.
Milestones timeline : Nature Milestones in Cytoskeleton.
32.
Windoffer, R., Beil, M., Magin, T.M., Leube, R.E.: Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. The Journal of Cell Biology. 194, 669–678 (2011). https://doi.org/10.1083/jcb.201008095.
33.
Simon, D.N., Wilson, K.L.: The nucleoskeleton as a genome-associated dynamic ‘network of networks’. Nature Reviews Molecular Cell Biology. 12, 695–708 (2011). https://doi.org/10.1038/nrm3207.
34.
Ridley, A.J.: Life at the Leading Edge. Cell. 145, 1012–1022 (2011). https://doi.org/10.1016/j.cell.2011.06.010.
35.
Campellone, K.G., Welch, M.D.: A nucleator arms race: cellular control of actin assembly. Nature Reviews Microbiology. 11, 237–251 (2010). https://doi.org/10.1038/nrm2867.
36.
Pollard, T.D., Borisy, G.G.: Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell. 112, 453–465 (2003). https://doi.org/10.1016/S0092-8674(03)00120-X.
37.
Chhabra, E.S., Higgs, H.N.: The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biology. 9, 1110–1121 (2007). https://doi.org/10.1038/ncb1007-1110.
38.
Insall, R.H., Machesky, L.M.: Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks. Developmental Cell. 17, 310–322 (2009). https://doi.org/10.1016/j.devcel.2009.08.012.
39.
VANTROYS, M., HUYCK, L., LEYMAN, S., DHAESE, S., VANDEKERKHOVE, J., AMPE, C.: Ins and outs of ADF/cofilin activity and regulation. European Journal of Cell Biology. 87, 649–667 (2008). https://doi.org/10.1016/j.ejcb.2008.04.001.
40.
Herrmann, H., Strelkov, S.V., Burkhard, P., Aebi, U.: Intermediate filaments: primary determinants of cell architecture and plasticity. Journal of Clinical Investigation. 119, 1772–1783 (2009). https://doi.org/10.1172/JCI38214.
41.
Goldman, R.D., Grin, B., Mendez, M.G., Kuczmarski, E.R.: Intermediate filaments: versatile building blocks of cell structure. Current Opinion in Cell Biology. 20, 28–34 (2008). https://doi.org/10.1016/j.ceb.2007.11.003.
42.
Herrmann, H., Bär, H., Kreplak, L., Strelkov, S.V., Aebi, U.: Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology. 8, 562–573 (2007). https://doi.org/10.1038/nrm2197.
43.
Godsel, L.M., Hobbs, R.P., Green, K.J.: Intermediate filament assembly: dynamics to disease. Trends in Cell Biology. 18, 28–37 (2008). https://doi.org/10.1016/j.tcb.2007.11.004.
44.
Delorme, V., Machacek, M., DerMardirossian, C., Anderson, K.L., Wittmann, T., Hanein, D., Waterman-Storer, C., Danuser, G., Bokoch, G.M.: Cofilin Activity Downstream of Pak1 Regulates Cell Protrusion Efficiency by Organizing Lamellipodium and Lamella Actin Networks. Developmental Cell. 13, 646–662 (2007). https://doi.org/10.1016/j.devcel.2007.08.011.
45.
Symons, M.H.: Control of actin polymerization in live and permeabilized fibroblasts. The Journal of Cell Biology. 114, 503–513 (1991). https://doi.org/10.1083/jcb.114.3.503.
46.
Miyoshi, T., Tsuji, T., Higashida, C., Hertzog, M., Fujita, A., Narumiya, S., Scita, G., Watanabe, N.: Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. The Journal of Cell Biology. 175, 947–955 (2006). https://doi.org/10.1083/jcb.200604176.
47.
Lee, C.-H., Coulombe, P.A.: Self-organization of keratin intermediate filaments into cross-linked networks. The Journal of Cell Biology. 186, 409–421 (2009). https://doi.org/10.1083/jcb.200810196.
48.
Colakoglu, G., Brown, A.: Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing. The Journal of Cell Biology. 185, 769–777 (2009). https://doi.org/10.1083/jcb.200809166.
49.
Akin, O., Mullins, R.D.: Capping Protein Increases the Rate of Actin-Based Motility by Promoting Filament Nucleation by the Arp2/3 Complex. Cell. 133, 841–851 (2008). https://doi.org/10.1016/j.cell.2008.04.011.
50.
Chen, C.-Y., Chi, Y.-H., Mutalif, R.A., Starost, M.F., Myers, T.G., Anderson, S.A., Stewart, C.L., Jeang, K.-T.: Accumulation of the Inner Nuclear Envelope Protein Sun1 Is Pathogenic in Progeric and Dystrophic Laminopathies. Cell. 149, 565–577 (2012). https://doi.org/10.1016/j.cell.2012.01.059.
51.
Chang, L., Barlan, K., Chou, Y.-H., Grin, B., Lakonishok, M., Serpinskaya, A.S., Shumaker, D.K., Herrmann, H., Gelfand, V.I., Goldman, R.D.: The dynamic properties of intermediate filaments during organelle transport. Journal of Cell Science. 122, 2914–2923 (2009). https://doi.org/10.1242/jcs.046789.
52.
Helfand, B.T., Mendez, M.G., Murthy, S.N.P., Shumaker, D.K., Grin, B., Mahammad, S., Aebi, U., Wedig, T., Wu, Y.I., Hahn, K.M., Inagaki, M., Herrmann, H., Goldman, R.D.: Vimentin organization modulates the formation of lamellipodia. Molecular Biology of the Cell. 22, 1274–1289 (2011). https://doi.org/10.1091/mbc.E10-08-0699.
53.
Ura, S., Pollitt, A.Y., Veltman, D.M., Morrice, N.A., Machesky, L.M., Insall, R.H.: Pseudopod Growth and Evolution during Cell Movement Is Controlled through SCAR/WAVE Dephosphorylation. Current Biology. 22, 553–561 (2012). https://doi.org/10.1016/j.cub.2012.02.020.
54.
Siton, O., Ideses, Y., Albeck, S., Unger, T., Bershadsky, A.D., Gov, N.S., Bernheim-Groswasser, A.: Cortactin Releases the Brakes in Actin- Based Motility by Enhancing WASP-VCA Detachment from Arp2/3 Branches. Current Biology. 21, 2092–2097 (2011). https://doi.org/10.1016/j.cub.2011.11.010.
55.
Suraneni, P., Rubinstein, B., Unruh, J.R., Durnin, M., Hanein, D., Li, R.: The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. The Journal of Cell Biology. 197, 239–251 (2012). https://doi.org/10.1083/jcb.201112113.
56.
Bordeleau, F., Myrand Lapierre, M.-E., Sheng, Y., Marceau, N.: Keratin 8/18 Regulation of Cell Stiffness-Extracellular Matrix Interplay through Modulation of Rho-Mediated Actin Cytoskeleton Dynamics. PLoS ONE. 7, (2012). https://doi.org/10.1371/journal.pone.0038780.
57.
DANIAL, N.: Cell DeathCritical Control Points. Cell. 116, 205–219 (2004). https://doi.org/10.1016/S0092-8674(04)00046-7.
58.
Pop, C., Salvesen, G.S.: Human Caspases: Activation, Specificity, and Regulation. Journal of Biological Chemistry. 284, 21777–21781 (2009). https://doi.org/10.1074/jbc.R800084200.
59.
Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J., Green, D.R.: The BCL-2 Family Reunion. Molecular Cell. 37, 299–310 (2010). https://doi.org/10.1016/j.molcel.2010.01.025.
60.
Fuchs, Y., Steller, H.: Programmed Cell Death in Animal Development and Disease. Cell. 147, 742–758 (2011). https://doi.org/10.1016/j.cell.2011.10.033.
61.
Liu, X., Kim, C.N., Yang, J., Jemmerson, R., Wang, X.: Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c. Cell. 86, 147–157 (1996). https://doi.org/10.1016/S0092-8674(00)80085-9.
62.
DATTA, S.: Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery. Cell. 91, 231–241 (1997). https://doi.org/10.1016/S0092-8674(00)80405-5.
63.
Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., Greenberg, M.E.: Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell. 96, 857–868 (1999). https://doi.org/10.1016/S0092-8674(00)80595-4.
64.
Whitfield, J., Neame, S.J., Paquet, L., Bernard, O., Ham, J.: Dominant-Negative c-Jun Promotes Neuronal Survival by Reducing BIM Expression and Inhibiting Mitochondrial Cytochrome c Release. Neuron. 29, 629–643 (2001). https://doi.org/10.1016/S0896-6273(01)00239-2.
65.
Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M., Deckwerth, T.L., Dinges, J., Hajduk, P.J., Joseph, M.K., Kitada, S., Korsmeyer, S.J., Kunzer, A.R., Letai, A., Li, C., Mitten, M.J., Nettesheim, D.G., Ng, S., Nimmer, P.M., O’Connor, J.M., Oleksijew, A., Petros, A.M., Reed, J.C., Shen, W., Tahir, S.K., Thompson, C.B., Tomaselli, K.J., Wang, B., Wendt, M.D., Zhang, H., Fesik, S.W., Rosenberg, S.H.: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 435, 677–681 (2005). https://doi.org/10.1038/nature03579.
66.
Wright, K.M., Vaughn, A.E., Deshmukh, M.: Apoptosome dependent caspase-3 activation pathway is non-redundant and necessary for apoptosis in sympathetic neurons. Cell Death and Differentiation. 14, 625–633 (2006). https://doi.org/10.1038/sj.cdd.4402024.
67.
Hübner, A., Barrett, T., Flavell, R.A., Davis, R.J.: Multisite Phosphorylation Regulates Bim Stability and Apoptotic Activity. Molecular Cell. 30, 415–425 (2008). https://doi.org/10.1016/j.molcel.2008.03.025.
68.
Gavathiotis, E., Suzuki, M., Davis, M.L., Pitter, K., Bird, G.H., Katz, S.G., Tu, H.-C., Kim, H., Cheng, E.H.-Y., Tjandra, N., Walensky, L.D.: BAX activation is initiated at a novel interaction site. Nature. 455, 1076–1081 (2008). https://doi.org/10.1038/nature07396.
69.
Johnson, C.H.: Circadian clocks and cell division. Cell Cycle. 9, 3864–3873 (2010). https://doi.org/10.4161/cc.9.19.13205.
70.
Vatine, G., Vallone, D., Gothilf, Y., Foulkes, N.S.: It’s time to swim! Zebrafish and the circadian clock. FEBS Letters. 585, 1485–1494 (2011). https://doi.org/10.1016/j.febslet.2011.04.007.
71.
Tamai, T.K., Young, L.C., Cox, C.A., Whitmore, D.: Light Acts on the Zebrafish Circadian Clock to Suppress Rhythmic Mitosis and Cell Proliferation. Journal of Biological Rhythms. 27, 226–236 (2012). https://doi.org/10.1177/0748730412440861.
72.
Idda, M.L., Kage, E., Lopez-Olmeda, J.F., Mracek, P., Foulkes, N.S., Vallone, D.: Circadian Timing of Injury-Induced Cell Proliferation in Zebrafish. PLoS ONE. 7, (2012). https://doi.org/10.1371/journal.pone.0034203.
73.
Dong, G., Yang, Q., Wang, Q., Kim, Y.-I., Wood, T.L., Osteryoung, K.W., van Oudenaarden, A., Golden, S.S.: Elevated ATPase Activity of KaiC Applies a Circadian Checkpoint on Cell Division in Synechococcus elongatus. Cell. 140, 529–539 (2010). https://doi.org/10.1016/j.cell.2009.12.042.
74.
Dickmeis, T., Lahiri, K., Nica, G., Vallone, D., Santoriello, C., Neumann, C.J., Hammerschmidt, M., Foulkes, N.S.: Glucocorticoids Play a Key Role in Circadian Cell Cycle Rhythms. PLoS Biology. 5, (2007). https://doi.org/10.1371/journal.pbio.0050078.
75.
Dekens, M.P.S., Santoriello, C., Vallone, D., Grassi, G., Whitmore, D., Foulkes, N.S.: Light Regulates the Cell Cycle in Zebrafish. Current Biology. 13, 2051–2057 (2003). https://doi.org/10.1016/j.cub.2003.10.022.
76.
Matsuo, T.: Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo. Science. 302, 255–259 (2003). https://doi.org/10.1126/science.1086271.
77.
Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., van de Sluis, B., Kirkland, J.L., van Deursen, J.M.: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479, 232–236 (2011). https://doi.org/10.1038/nature10600.
78.
Serrano, M., Blasco, M.A.: Cancer and ageing: convergent and divergent mechanisms. Nature Reviews Molecular Cell Biology. 8, 715–722 (2007). https://doi.org/10.1038/nrm2242.
79.
Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., Lowe, S.W.: Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell. 134, 657–667 (2008). https://doi.org/10.1016/j.cell.2008.06.049.
80.
Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., Lowe, S.W.: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 445, 656–660 (2007). https://doi.org/10.1038/nature05529.
81.
Narita, M., Lowe, S.W.: Senescence comes of age. Nature Medicine. 11, 920–922 (2005). https://doi.org/10.1038/nm0905-920.
82.
Sarin, K.Y., Cheung, P., Gilison, D., Lee, E., Tennen, R.I., Wang, E., Artandi, M.K., Oro, A.E., Artandi, S.E.: Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature. 436, 1048–1052 (2005). https://doi.org/10.1038/nature03836.