[1]
Alberts, Bruce, Molecular biology of the cell, Reference ed., 5th ed. Abingdon: Garland Science, 2008.
[2]
Pollard, Thomas D. and Earnshaw, William C., Cell biology, 2nd ed. Philadelphia: Saunders/Elsevier, 2008.
[3]
Lodish, Harvey F., Molecular cell biology, 6th ed. Basingstoke: Palgrave Macmillan, 2007.
[4]
Alberts, Bruce, Essential cell biology, 3rd ed. London: Garland Science, 2010.
[5]
‘iBioSeminars: Free biology videos online’. .
[6]
B. N. G. Giepmans, ‘The Fluorescent Toolbox for Assessing Protein Location and Function’, Science, vol. 312, no. 5771, pp. 217–224, Apr. 2006, doi: 10.1126/science.1124618.
[7]
A. J. North, ‘Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition’, The Journal of Cell Biology, vol. 172, no. 1, pp. 9–18, Jan. 2006, doi: 10.1083/jcb.200507103.
[8]
N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, ‘A guide to choosing fluorescent proteins’, Nature Methods, vol. 2, no. 12, pp. 905–909, Dec. 2005, doi: 10.1038/nmeth819.
[9]
‘Molecular Probes®, Labeling & Detection Technologies | Life Technologies’. .
[10]
‘Nikon MicroscopyU’. .
[11]
L. Pelkmans, ‘Using Cell-to-Cell Variability--A New Era in Molecular Biology’, Science, vol. 336, no. 6080, pp. 425–426, Apr. 2012, doi: 10.1126/science.1222161.
[12]
D. R. Larson, D. Zenklusen, B. Wu, J. A. Chao, and R. H. Singer, ‘Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene’, Science, vol. 332, no. 6028, pp. 475–478, Apr. 2011, doi: 10.1126/science.1202142.
[13]
A. Raj and A. van Oudenaarden, ‘Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences’, Cell, vol. 135, no. 2, pp. 216–226, Oct. 2008, doi: 10.1016/j.cell.2008.09.050.
[14]
A. Brock, H. Chang, and S. Huang, ‘Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours’, Nature Reviews Genetics, vol. 10, no. 5, pp. 336–342, May 2009, doi: 10.1038/nrg2556.
[15]
T. Lionnet and R. H. Singer, ‘Transcription goes digital’, EMBO reports, vol. 13, no. 4, pp. 313–321, Mar. 2012, doi: 10.1038/embor.2012.31.
[16]
S. L. Spencer, S. Gaudet, J. G. Albeck, J. M. Burke, and P. K. Sorger, ‘Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis’, Nature, vol. 459, no. 7245, pp. 428–432, Apr. 2009, doi: 10.1038/nature08012.
[17]
Morgan, David Owen, The cell cycle: principles of control, vol. Primers in biology. London: New Science Press in association with Oxford University Press and Sinauer Associates, 2007.
[18]
Watson, James D., Molecular biology of the gene, 6th ed. Cold Spring Harbor, N.Y.: Pearson/Benjamin Cummings, 2008.
[19]
Alberts, Bruce, Molecular biology of the cell, Reference ed., 5th ed. Abingdon: Garland Science, 2008.
[20]
Murray, Andrew Wood and Hunt, Tim, The cell cycle: an introduction. New York: Oxford University Press, 1993.
[21]
T. Evans, E. T. Rosenthal, J. Youngblom, D. Distel, and T. Hunt, ‘Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division’, Cell, vol. 33, no. 2, pp. 389–396, Jun. 1983, doi: 10.1016/0092-8674(83)90420-8.
[22]
L. H. Hartwell, ‘Twenty-five years of cell cycle genetics’, Genetics, vol. 129, no. 4, pp. 975–980, 1991.
[23]
J. Bartek and J. Lukas, ‘DNA damage checkpoints: from initiation to recovery or adaptation’, Current Opinion in Cell Biology, vol. 19, no. 2, pp. 238–245, Apr. 2007, doi: 10.1016/j.ceb.2007.02.009.
[24]
K. Nasmyth and A. Schleiffer, ‘From a single double helix to paired double helices and back’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1441, pp. 99–108, Jan. 2004, doi: 10.1098/rstb.2003.1417.
[25]
Ted A. Weinert and Leland H. Hartwell, ‘The RAD9 Gene Controls the Cell Cycle Response to DNA Damage in Saccharomyces cerevisiae’, Science, vol. 241, no. 4863, pp. 317–322, 1988.
[26]
B. J. Howell, D. B. Hoffman, G. Fang, A. W. Murray, and E. D. Salmon, ‘Visualization of Mad2 Dynamics at Kinetochores, along Spindle Fibers, and at Spindle Poles in Living Cells’, The Journal of Cell Biology, vol. 150, no. 6, pp. 1233–1250, Sep. 2000, doi: 10.1083/jcb.150.6.1233.
[27]
A. Musacchio and E. D. Salmon, ‘The spindle-assembly checkpoint in space and time’, Nature Reviews Molecular Cell Biology, vol. 8, no. 5, pp. 379–393, Apr. 2007, doi: 10.1038/nrm2163.
[28]
Alberts, Bruce, Molecular biology of the cell, Reference ed., 5th ed. Abingdon: Garland Science, 2008.
[29]
Nature Publishing Group, Encyclopedia of life sciences. Basingstoke: Macmillan, 2001 [Online]. Available: http://www.els.net
[30]
‘Milestones timeline : Nature Milestones in Cytoskeleton’. .
[32]
R. Windoffer, M. Beil, T. M. Magin, and R. E. Leube, ‘Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia’, The Journal of Cell Biology, vol. 194, no. 5, pp. 669–678, Sep. 2011, doi: 10.1083/jcb.201008095.
[33]
D. N. Simon and K. L. Wilson, ‘The nucleoskeleton as a genome-associated dynamic “network of networks”’, Nature Reviews Molecular Cell Biology, vol. 12, no. 11, pp. 695–708, Oct. 2011, doi: 10.1038/nrm3207.
[34]
A. J. Ridley, ‘Life at the Leading Edge’, Cell, vol. 145, no. 7, pp. 1012–1022, Jun. 2011, doi: 10.1016/j.cell.2011.06.010.
[35]
K. G. Campellone and M. D. Welch, ‘A nucleator arms race: cellular control of actin assembly’, Nature Reviews Microbiology, vol. 11, no. 4, pp. 237–251, Mar. 2010, doi: 10.1038/nrm2867.
[36]
T. D. Pollard and G. G. Borisy, ‘Cellular Motility Driven by Assembly and Disassembly of Actin Filaments’, Cell, vol. 112, no. 4, pp. 453–465, Feb. 2003, doi: 10.1016/S0092-8674(03)00120-X.
[37]
E. S. Chhabra and H. N. Higgs, ‘The many faces of actin: matching assembly factors with cellular structures’, Nature Cell Biology, vol. 9, no. 10, pp. 1110–1121, Oct. 2007, doi: 10.1038/ncb1007-1110.
[38]
R. H. Insall and L. M. Machesky, ‘Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks’, Developmental Cell, vol. 17, no. 3, pp. 310–322, Sep. 2009, doi: 10.1016/j.devcel.2009.08.012.
[39]
M. VANTROYS, L. HUYCK, S. LEYMAN, S. DHAESE, J. VANDEKERKHOVE, and C. AMPE, ‘Ins and outs of ADF/cofilin activity and regulation’, European Journal of Cell Biology, vol. 87, no. 8–9, pp. 649–667, Sep. 2008, doi: 10.1016/j.ejcb.2008.04.001.
[40]
H. Herrmann, S. V. Strelkov, P. Burkhard, and U. Aebi, ‘Intermediate filaments: primary determinants of cell architecture and plasticity’, Journal of Clinical Investigation, vol. 119, no. 7, pp. 1772–1783, Jul. 2009, doi: 10.1172/JCI38214.
[41]
R. D. Goldman, B. Grin, M. G. Mendez, and E. R. Kuczmarski, ‘Intermediate filaments: versatile building blocks of cell structure’, Current Opinion in Cell Biology, vol. 20, no. 1, pp. 28–34, Feb. 2008, doi: 10.1016/j.ceb.2007.11.003.
[42]
H. Herrmann, H. Bär, L. Kreplak, S. V. Strelkov, and U. Aebi, ‘Intermediate filaments: from cell architecture to nanomechanics’, Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 562–573, Jul. 2007, doi: 10.1038/nrm2197.
[43]
L. M. Godsel, R. P. Hobbs, and K. J. Green, ‘Intermediate filament assembly: dynamics to disease’, Trends in Cell Biology, vol. 18, no. 1, pp. 28–37, Jan. 2008, doi: 10.1016/j.tcb.2007.11.004.
[44]
V. Delorme et al., ‘Cofilin Activity Downstream of Pak1 Regulates Cell Protrusion Efficiency by Organizing Lamellipodium and Lamella Actin Networks’, Developmental Cell, vol. 13, no. 5, pp. 646–662, Nov. 2007, doi: 10.1016/j.devcel.2007.08.011.
[45]
M. H. Symons, ‘Control of actin polymerization in live and permeabilized fibroblasts’, The Journal of Cell Biology, vol. 114, no. 3, pp. 503–513, Aug. 1991, doi: 10.1083/jcb.114.3.503.
[46]
T. Miyoshi et al., ‘Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing’, The Journal of Cell Biology, vol. 175, no. 6, pp. 947–955, Dec. 2006, doi: 10.1083/jcb.200604176.
[47]
C.-H. Lee and P. A. Coulombe, ‘Self-organization of keratin intermediate filaments into cross-linked networks’, The Journal of Cell Biology, vol. 186, no. 3, pp. 409–421, Aug. 2009, doi: 10.1083/jcb.200810196.
[48]
G. Colakoglu and A. Brown, ‘Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing’, The Journal of Cell Biology, vol. 185, no. 5, pp. 769–777, May 2009, doi: 10.1083/jcb.200809166.
[49]
O. Akin and R. D. Mullins, ‘Capping Protein Increases the Rate of Actin-Based Motility by Promoting Filament Nucleation by the Arp2/3 Complex’, Cell, vol. 133, no. 5, pp. 841–851, May 2008, doi: 10.1016/j.cell.2008.04.011.
[50]
C.-Y. Chen et al., ‘Accumulation of the Inner Nuclear Envelope Protein Sun1 Is Pathogenic in Progeric and Dystrophic Laminopathies’, Cell, vol. 149, no. 3, pp. 565–577, Apr. 2012, doi: 10.1016/j.cell.2012.01.059.
[51]
L. Chang et al., ‘The dynamic properties of intermediate filaments during organelle transport’, Journal of Cell Science, vol. 122, no. 16, pp. 2914–2923, Jul. 2009, doi: 10.1242/jcs.046789.
[52]
B. T. Helfand et al., ‘Vimentin organization modulates the formation of lamellipodia’, Molecular Biology of the Cell, vol. 22, no. 8, pp. 1274–1289, Feb. 2011, doi: 10.1091/mbc.E10-08-0699.
[53]
S. Ura, A. Y. Pollitt, D. M. Veltman, N. A. Morrice, L. M. Machesky, and R. H. Insall, ‘Pseudopod Growth and Evolution during Cell Movement Is Controlled through SCAR/WAVE Dephosphorylation’, Current Biology, vol. 22, no. 7, pp. 553–561, Apr. 2012, doi: 10.1016/j.cub.2012.02.020.
[54]
O. Siton et al., ‘Cortactin Releases the Brakes in Actin- Based Motility by Enhancing WASP-VCA Detachment from Arp2/3 Branches’, Current Biology, vol. 21, no. 24, pp. 2092–2097, Dec. 2011, doi: 10.1016/j.cub.2011.11.010.
[55]
P. Suraneni, B. Rubinstein, J. R. Unruh, M. Durnin, D. Hanein, and R. Li, ‘The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration’, The Journal of Cell Biology, vol. 197, no. 2, pp. 239–251, Apr. 2012, doi: 10.1083/jcb.201112113.
[56]
F. Bordeleau, M.-E. Myrand Lapierre, Y. Sheng, and N. Marceau, ‘Keratin 8/18 Regulation of Cell Stiffness-Extracellular Matrix Interplay through Modulation of Rho-Mediated Actin Cytoskeleton Dynamics’, PLoS ONE, vol. 7, no. 6, Jun. 2012, doi: 10.1371/journal.pone.0038780.
[57]
N. DANIAL, ‘Cell DeathCritical Control Points’, Cell, vol. 116, no. 2, pp. 205–219, Jan. 2004, doi: 10.1016/S0092-8674(04)00046-7.
[58]
C. Pop and G. S. Salvesen, ‘Human Caspases: Activation, Specificity, and Regulation’, Journal of Biological Chemistry, vol. 284, no. 33, pp. 21777–21781, May 2009, doi: 10.1074/jbc.R800084200.
[59]
J. E. Chipuk, T. Moldoveanu, F. Llambi, M. J. Parsons, and D. R. Green, ‘The BCL-2 Family Reunion’, Molecular Cell, vol. 37, no. 3, pp. 299–310, Feb. 2010, doi: 10.1016/j.molcel.2010.01.025.
[60]
Y. Fuchs and H. Steller, ‘Programmed Cell Death in Animal Development and Disease’, Cell, vol. 147, no. 4, pp. 742–758, Nov. 2011, doi: 10.1016/j.cell.2011.10.033.
[61]
X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, ‘Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c’, Cell, vol. 86, no. 1, pp. 147–157, Jul. 1996, doi: 10.1016/S0092-8674(00)80085-9.
[62]
S. DATTA, ‘Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery’, Cell, vol. 91, no. 2, pp. 231–241, Oct. 1997, doi: 10.1016/S0092-8674(00)80405-5.
[63]
A. Brunet et al., ‘Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor’, Cell, vol. 96, no. 6, pp. 857–868, Mar. 1999, doi: 10.1016/S0092-8674(00)80595-4.
[64]
J. Whitfield, S. J. Neame, L. Paquet, O. Bernard, and J. Ham, ‘Dominant-Negative c-Jun Promotes Neuronal Survival by Reducing BIM Expression and Inhibiting Mitochondrial Cytochrome c Release’, Neuron, vol. 29, no. 3, pp. 629–643, Mar. 2001, doi: 10.1016/S0896-6273(01)00239-2.
[65]
T. Oltersdorf et al., ‘An inhibitor of Bcl-2 family proteins induces regression of solid tumours’, Nature, vol. 435, no. 7042, pp. 677–681, May 2005, doi: 10.1038/nature03579.
[66]
K. M. Wright, A. E. Vaughn, and M. Deshmukh, ‘Apoptosome dependent caspase-3 activation pathway is non-redundant and necessary for apoptosis in sympathetic neurons’, Cell Death and Differentiation, vol. 14, no. 3, pp. 625–633, Aug. 2006, doi: 10.1038/sj.cdd.4402024.
[67]
A. Hübner, T. Barrett, R. A. Flavell, and R. J. Davis, ‘Multisite Phosphorylation Regulates Bim Stability and Apoptotic Activity’, Molecular Cell, vol. 30, no. 4, pp. 415–425, May 2008, doi: 10.1016/j.molcel.2008.03.025.
[68]
E. Gavathiotis et al., ‘BAX activation is initiated at a novel interaction site’, Nature, vol. 455, no. 7216, pp. 1076–1081, Oct. 2008, doi: 10.1038/nature07396.
[69]
C. H. Johnson, ‘Circadian clocks and cell division’, Cell Cycle, vol. 9, no. 19, pp. 3864–3873, Oct. 2010, doi: 10.4161/cc.9.19.13205.
[70]
G. Vatine, D. Vallone, Y. Gothilf, and N. S. Foulkes, ‘It’s time to swim! Zebrafish and the circadian clock’, FEBS Letters, vol. 585, no. 10, pp. 1485–1494, May 2011, doi: 10.1016/j.febslet.2011.04.007.
[71]
T. K. Tamai, L. C. Young, C. A. Cox, and D. Whitmore, ‘Light Acts on the Zebrafish Circadian Clock to Suppress Rhythmic Mitosis and Cell Proliferation’, Journal of Biological Rhythms, vol. 27, no. 3, pp. 226–236, May 2012, doi: 10.1177/0748730412440861.
[72]
M. L. Idda, E. Kage, J. F. Lopez-Olmeda, P. Mracek, N. S. Foulkes, and D. Vallone, ‘Circadian Timing of Injury-Induced Cell Proliferation in Zebrafish’, PLoS ONE, vol. 7, no. 3, Mar. 2012, doi: 10.1371/journal.pone.0034203.
[73]
G. Dong et al., ‘Elevated ATPase Activity of KaiC Applies a Circadian Checkpoint on Cell Division in Synechococcus elongatus’, Cell, vol. 140, no. 4, pp. 529–539, Feb. 2010, doi: 10.1016/j.cell.2009.12.042.
[74]
T. Dickmeis et al., ‘Glucocorticoids Play a Key Role in Circadian Cell Cycle Rhythms’, PLoS Biology, vol. 5, no. 4, Mar. 2007, doi: 10.1371/journal.pbio.0050078.
[75]
M. P. S. Dekens, C. Santoriello, D. Vallone, G. Grassi, D. Whitmore, and N. S. Foulkes, ‘Light Regulates the Cell Cycle in Zebrafish’, Current Biology, vol. 13, no. 23, pp. 2051–2057, Dec. 2003, doi: 10.1016/j.cub.2003.10.022.
[76]
T. Matsuo, ‘Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo’, Science, vol. 302, no. 5643, pp. 255–259, Oct. 2003, doi: 10.1126/science.1086271.
[77]
D. J. Baker et al., ‘Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders’, Nature, vol. 479, no. 7372, pp. 232–236, Nov. 2011, doi: 10.1038/nature10600.
[78]
M. Serrano and M. A. Blasco, ‘Cancer and ageing: convergent and divergent mechanisms’, Nature Reviews Molecular Cell Biology, vol. 8, no. 9, pp. 715–722, Sep. 2007, doi: 10.1038/nrm2242.
[79]
V. Krizhanovsky et al., ‘Senescence of Activated Stellate Cells Limits Liver Fibrosis’, Cell, vol. 134, no. 4, pp. 657–667, Aug. 2008, doi: 10.1016/j.cell.2008.06.049.
[80]
W. Xue et al., ‘Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas’, Nature, vol. 445, no. 7128, pp. 656–660, Jan. 2007, doi: 10.1038/nature05529.
[81]
M. Narita and S. W. Lowe, ‘Senescence comes of age’, Nature Medicine, vol. 11, no. 9, pp. 920–922, Sep. 2005, doi: 10.1038/nm0905-920.
[82]
K. Y. Sarin et al., ‘Conditional telomerase induction causes proliferation of hair follicle stem cells’, Nature, vol. 436, no. 7053, pp. 1048–1052, Aug. 2005, doi: 10.1038/nature03836.