1.
Goodman JM. Chemical Applications of Molecular Modelling. Royal Society of Chemistry; 1998.
2.
Jensen F. Introduction to Computational Chemistry. 2nd ed. John Wiley & Sons; 2007.
3.
Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Vol v. 1. 2nd ed. Academic Press; 2002. doi:10.1016/B978-0-12-267351-1.X5000-7
4.
Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Third edition. Academic Press; 2023. doi:10.1016/C2009-0-63921-0
5.
Frenkel D, Smit B, Ratner MA. Understanding Molecular Simulation: From Algorithms to Applications. Physics Today. 1997;50(7). doi:10.1063/1.881812
6.
Bladon P, Gorton JE, Hammond RB. Molecular Modelling: Computational Chemistry Demystified. RSC Publishing; 2012.
7.
TACC 2012 (2012 Pavia, Italy). Theory and Applications in Computational Chemistry. American Institute of Physics; 2012. https://pubs.aip.org/aip/acp/issue/1456/1
8.
Lau GV, Hunt PA, Müller EA, Jackson G, Ford IJ. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics. The Journal of Chemical Physics. 2015;143(24). doi:10.1063/1.4935198
9.
Tribello GA, Slater B, Salzmann CG. A Blind Structure Prediction of Ice XIV. Journal of the American Chemical Society. 2006;128(39):12594-12595. doi:10.1021/ja0630902
10.
Price SL, Reutzel-Edens SM. The potential of computed crystal energy landscapes to aid solid-form development. Drug Discovery Today. 2016;21(6):912-923. doi:10.1016/j.drudis.2016.01.014
11.
Silbey RJ. Part Two: Quantum Chemistry. In: Physical Chemistry. 4th ed. Wiley; 2005.
12.
Atkins PW, De Paula J, Keeler J. Atkins’ Physical Chemistry. Twelfth edition. Oxford University Press; 2023.
13.
Deglmann P, Schäfer A, Lennartz C. Application of quantum calculations in the chemical industry-An overview. International Journal of Quantum Chemistry. 2015;115(3):107-136. doi:10.1002/qua.24811
14.
Leach AR. Molecular Modelling: Principles and Applications. Second edition. Pearson/Prentice Hall; 2001.
15.
Atkins PW, De Paula J, Friedman R. Quanta, Matter, and Change: A Molecular Approach to Physical Chemistry. Oxford University Press; 2009.
16.
Arndt S, Laugel G, Levchenko S, et al. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews. 2011;53(4):424-514. doi:10.1080/01614940.2011.613330
17.
Ackermann L, Gale JD, Catlow CRA. Interaction of Methane with a [Li] Center on MgO(100):  HF, Post-HF, and DFT Cluster Model Studies. The Journal of Physical Chemistry B. 1997;101(48):10028-10034. doi:10.1021/jp972198o
18.
Catlow CRA. Computational Approaches to the Determination of Active Site Structures and Reaction Mechanisms in Heterogeneous Catalysts. Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 2005;363(1829):913-936. https://www.jstor.org/stable/30039617
19.
Stiakaki MAD, Tsipis AC, Tsipis CA, Xanthopoulos CE. Theoretical aspects of methane chemisorption on MgO surfaces. Modelling of impurity-induced trapping of a hole, surface defects and site dependence of methane chemisorption on (MgO)9,12 clusters. Journal of the Chemical Society, Faraday Transactions. 1996;92(15). doi:10.1039/ft9969202765
20.
Scanlon DO, Walsh A, Morgan BJ, Nolan M, Fearon J, Watson GW. Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. Journal of Physical Chemistry C. 2007;111(22):7971-7979. doi:10.1021/jp070200y
21.
Additional background material on the Nobel Prize in Chemistry 1998. Published online 1998. https://www.nobelprize.org/prizes/chemistry/1998/advanced-information/
22.
John Pople Nobel Lecture - HF methods. Published online 1998. https://www.nobelprize.org/prizes/chemistry/1998/pople/lecture/
23.
Walter Kohn Nobel Lecture - DFT. Published online 1999. https://www.nobelprize.org/prizes/chemistry/1998/kohn/lecture/
24.
Ganose AM, Scanlon DO. Band gap and work function tailoring of SnO                              for improved transparent conducting ability in photovoltaics. J Mater Chem C. 2016;4(7):1467-1475. doi:10.1039/C5TC04089B