[1]
J. M. Goodman, Chemical applications of molecular modelling. Cambridge: Royal Society of Chemistry, 1998.
[2]
F. Jensen, Introduction to computational chemistry, 2nd ed. Chichester: John Wiley & Sons, 2007.
[3]
D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, 2nd ed., vol. v. 1. San Diego, Calif: Academic Press, 2002. doi: 10.1016/B978-0-12-267351-1.X5000-7
[4]
D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, Third edition. Amsterdam: Academic Press, 2023. doi: 10.1016/C2009-0-63921-0. Available: https://www.sciencedirect.com/science/book/9780323902922
[5]
D. Frenkel, B. Smit, and M. A. Ratner, ‘Understanding Molecular Simulation: From Algorithms to Applications’, Physics Today, vol. 50, no. 7, 1997, doi: 10.1063/1.881812
[6]
P. Bladon, J. E. Gorton, and R. B. Hammond, Molecular modelling: computational chemistry demystified. Cambridge: RSC Publishing, 2012.
[7]
TACC 2012 (2012 Pavia, Italy), Theory and applications in computational chemistry. Melville, N.Y: American Institute of Physics, 2012. Available: https://pubs.aip.org/aip/acp/issue/1456/1
[8]
G. V. Lau, P. A. Hunt, E. A. Müller, G. Jackson, and I. J. Ford, ‘Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics’, The Journal of Chemical Physics, vol. 143, no. 24, Dec. 2015, doi: 10.1063/1.4935198
[9]
G. A. Tribello, B. Slater, and C. G. Salzmann, ‘A Blind Structure Prediction of Ice XIV’, Journal of the American Chemical Society, vol. 128, no. 39, pp. 12594–12595, Oct. 2006, doi: 10.1021/ja0630902. Available: https://contentstore.cla.co.uk/secure/link?id=24d6c08f-040c-f011-90cc-c5989c4ef87d
[10]
S. L. Price and S. M. Reutzel-Edens, ‘The potential of computed crystal energy landscapes to aid solid-form development’, Drug Discovery Today, vol. 21, no. 6, pp. 912–923, June 2016, doi: 10.1016/j.drudis.2016.01.014
[11]
R. J. Silbey, ‘Part Two: Quantum Chemistry’, in Physical chemistry, 4th ed.Hoboken, N.J.: Wiley, 2005.
[12]
P. W. Atkins, J. De Paula, and J. Keeler, Atkins’ Physical chemistry, Twelfth edition. Oxford, United Kingdom: Oxford University Press, 2023.
[13]
P. Deglmann, A. Schäfer, and C. Lennartz, ‘Application of quantum calculations in the chemical industry-An overview’, International Journal of Quantum Chemistry, vol. 115, no. 3, pp. 107–136, Feb. 2015, doi: 10.1002/qua.24811
[14]
A. R. Leach, Molecular modelling: principles and applications, Second edition. Harlow, England: Pearson/Prentice Hall, 2001.
[15]
P. W. Atkins, J. De Paula, and R. Friedman, Quanta, matter, and change: a molecular approach to physical chemistry. Oxford: Oxford University Press, 2009.
[16]
S. Arndt et al., ‘A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane’, Catalysis Reviews, vol. 53, no. 4, pp. 424–514, Oct. 2011, doi: 10.1080/01614940.2011.613330
[17]
L. Ackermann, J. D. Gale, and C. R. A. Catlow, ‘Interaction of Methane with a [Li] Center on MgO(100): HF, Post-HF, and DFT Cluster Model Studies’, The Journal of Physical Chemistry B, vol. 101, no. 48, pp. 10028–10034, Nov. 1997, doi: 10.1021/jp972198o. Available: https://contentstore.cla.co.uk/secure/link?id=e5196124-050c-f011-90cc-c5989c4ef87d
[18]
C. R. A. Catlow, ‘Computational Approaches to the Determination of Active Site Structures and Reaction Mechanisms in Heterogeneous Catalysts’, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, vol. 363, no. 1829, pp. 913–936, 2005, Available: https://www.jstor.org/stable/30039617
[19]
M.-A. D. Stiakaki, A. C. Tsipis, C. A. Tsipis, and C. E. Xanthopoulos, ‘Theoretical aspects of methane chemisorption on MgO surfaces. Modelling of impurity-induced trapping of a hole, surface defects and site dependence of methane chemisorption on (MgO)9,12 clusters’, Journal of the Chemical Society, Faraday Transactions, vol. 92, no. 15, 1996, doi: 10.1039/ft9969202765
[20]
D. O. Scanlon, A. Walsh, B. J. Morgan, M. Nolan, J. Fearon, and G. W. Watson, ‘Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for on-Site Coulomb Interactions’, Journal of Physical Chemistry C, vol. 111, no. 22, pp. 7971–7979, June 2007, doi: 10.1021/jp070200y
[21]
‘Additional background material on the Nobel Prize in Chemistry 1998’. Nobel Prize, 1998. Available: https://www.nobelprize.org/prizes/chemistry/1998/advanced-information/
[22]
‘John Pople Nobel Lecture - HF methods’. Nobel Prize, 1998. Available: https://www.nobelprize.org/prizes/chemistry/1998/pople/lecture/
[23]
‘Walter Kohn Nobel Lecture - DFT’. The Nobel Foundation, 1999. Available: https://www.nobelprize.org/prizes/chemistry/1998/kohn/lecture/
[24]
A. M. Ganose and D. O. Scanlon, ‘Band gap and work function tailoring of SnO for improved transparent conducting ability in photovoltaics’, J. Mater. Chem. C, vol. 4, no. 7, pp. 1467–1475, 2016, doi: 10.1039/C5TC04089B