1
Goodman JM. Chemical applications of molecular modelling. Cambridge: : Royal Society of Chemistry 1998.
2
Jensen F. Introduction to computational chemistry. 2nd ed. Chichester: : John Wiley & Sons 2007.
3
Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego, Calif: : Academic Press 2002.
4
Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego: : Academic Press 1996.
5
Frenkel D, Smit B, Ratner MA. Understanding Molecular Simulation: From Algorithms to Applications. Physics Today 1997;50. doi:10.1063/1.881812
6
Bladon P, Gorton JE, Hammond RB. Molecular modelling: computational chemistry demystified. Cambridge: : RSC Publishing 2012.
7
Theory and Applications in Computational Chemistry. http://www.tacc2012.org/Proceedings.html
8
Lau GV, Hunt PA, Müller EA, et al. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics. The Journal of Chemical Physics 2015;143. doi:10.1063/1.4935198
9
Tribello GA, Slater B, Salzmann CG. A Blind Structure Prediction of Ice XIV. Journal of the American Chemical Society 2006;128:12594–5. doi:10.1021/ja0630902
10
Price SL, Reutzel-Edens SM. The potential of computed crystal energy landscapes to aid solid-form development. Drug Discovery Today 2016;21:912–23. doi:10.1016/j.drudis.2016.01.014
11
Silbey RJ, Alberty RA, Bawendi MG, et al. Alberti & Silbey Chapter on Quantum Chemistry. In: Physical chemistry. Hoboken, N.J.: : Wiley 2005.
12
Atkins PW, De Paula J. Atkins’ physical chemistry. Tenth edition. Oxford: : Oxford University Press 2014.
13
Deglmann P, Schäfer A, Lennartz C. Application of quantum calculations in the chemical industry-An overview. International Journal of Quantum Chemistry 2015;115:107–36. doi:10.1002/qua.24811
14
Leach AR. Molecular modelling: principles and applications. Second edition. Harlow, England: : Pearson 2001.
15
Atkins PW, De Paula J, Friedman R. Quanta, matter, and change: a molecular approach to physical chemistry. Oxford: : Oxford University Press 2009.
16
Arndt S, Laugel G, Levchenko S, et al. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews 2011;53:424–514. doi:10.1080/01614940.2011.613330
17
Ackermann L, Gale JD, Catlow CRA. Interaction of Methane with a [Li] Center on MgO(100):  HF, Post-HF, and DFT Cluster Model Studies. The Journal of Physical Chemistry B 1997;101:10028–34. doi:10.1021/jp972198o
18
C. R. A. Catlow, S. A. French, A. A. Sokol and J. M. Thomas. Computational Approaches to the Determination of Active Site Structures and Reaction Mechanisms in Heterogeneous Catalysts. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 2005;363:913–36.http://www.jstor.org/stable/30039617?seq=19#page_scan_tab_contents
19
Stiakaki M-AD, Tsipis AC, Tsipis CA, et al. Theoretical aspects of methane chemisorption on MgO surfaces. Modelling of impurity-induced trapping of a hole, surface defects and site dependence of methane chemisorption on (MgO)9,12 clusters. Journal of the Chemical Society, Faraday Transactions 1996;92. doi:10.1039/ft9969202765
20
Scanlon DO, Walsh A, Morgan BJ, et al. Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. Journal of Physical Chemistry C 2007;111:7971–9. doi:10.1021/jp070200y
21
The Nobel Prize in Chemistry 1998 - Summary. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/advanced.html
22
John Pople Nobel Lecture - HF methods. https://www.nobelprize.org/uploads/2018/06/pople-lecture.pdf
23
Walter Kohn Nobel Lecture - DFT. https://www.nobelprize.org/uploads/2018/06/kohn-lecture.pdf
24
Ganose AM, Scanlon DO. Band gap and work function tailoring of SnO                              for improved transparent conducting ability in photovoltaics. J Mater Chem C 2016;4:1467–75. doi:10.1039/C5TC04089B