1
Goodman JM. Chemical applications of molecular modelling. Cambridge: Royal Society of Chemistry 1998.
2
Jensen F. Introduction to computational chemistry. 2nd ed. Chichester: John Wiley & Sons 2007.
3
Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego, Calif: Academic Press 2002.
4
Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. Third edition. Amsterdam: Academic Press 2023.
5
Frenkel D, Smit B, Ratner MA. Understanding Molecular Simulation: From Algorithms to Applications. Physics Today. 1997;50. doi: 10.1063/1.881812
6
Bladon P, Gorton JE, Hammond RB. Molecular modelling: computational chemistry demystified. Cambridge: RSC Publishing 2012.
7
TACC 2012 (2012 Pavia, Italy). Theory and applications in computational chemistry. Melville, N.Y: American Institute of Physics 2012.
8
Lau GV, Hunt PA, Müller EA, et al. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics. The Journal of Chemical Physics. 2015;143. doi: 10.1063/1.4935198
9
Tribello GA, Slater B, Salzmann CG. A Blind Structure Prediction of Ice XIV. Journal of the American Chemical Society. 2006;128:12594–5. doi: 10.1021/ja0630902
10
Price SL, Reutzel-Edens SM. The potential of computed crystal energy landscapes to aid solid-form development. Drug Discovery Today. 2016;21:912–23. doi: 10.1016/j.drudis.2016.01.014
11
Silbey RJ. Part Two: Quantum Chemistry. Physical chemistry. Hoboken, N.J.: Wiley 2005.
12
Atkins PW, De Paula J, Keeler J. Atkins’ Physical chemistry. Twelfth edition. Oxford, United Kingdom: Oxford University Press 2023.
13
Deglmann P, Schäfer A, Lennartz C. Application of quantum calculations in the chemical industry-An overview. International Journal of Quantum Chemistry. 2015;115:107–36. doi: 10.1002/qua.24811
14
Leach AR. Molecular modelling: principles and applications. Second edition. Harlow, England: Pearson/Prentice Hall 2001.
15
Atkins PW, De Paula J, Friedman R. Quanta, matter, and change: a molecular approach to physical chemistry. Oxford: Oxford University Press 2009.
16
Arndt S, Laugel G, Levchenko S, et al. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews. 2011;53:424–514. doi: 10.1080/01614940.2011.613330
17
Ackermann L, Gale JD, Catlow CRA. Interaction of Methane with a [Li] Center on MgO(100): HF, Post-HF, and DFT Cluster Model Studies. The Journal of Physical Chemistry B. 1997;101:10028–34. doi: 10.1021/jp972198o
18
Catlow CRA. Computational Approaches to the Determination of Active Site Structures and Reaction Mechanisms in Heterogeneous Catalysts. Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 2005;363:913–36.
19
Stiakaki M-AD, Tsipis AC, Tsipis CA, et al. Theoretical aspects of methane chemisorption on MgO surfaces. Modelling of impurity-induced trapping of a hole, surface defects and site dependence of methane chemisorption on (MgO)9,12 clusters. Journal of the Chemical Society, Faraday Transactions. 1996;92. doi: 10.1039/ft9969202765
20
Scanlon DO, Walsh A, Morgan BJ, et al. Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. Journal of Physical Chemistry C. 2007;111:7971–9. doi: 10.1021/jp070200y
21
Additional background material on the Nobel Prize in Chemistry 1998. 1998.
22
John Pople Nobel Lecture - HF methods. 1998.
23
Walter Kohn Nobel Lecture - DFT. 1999.
24
Ganose AM, Scanlon DO. Band gap and work function tailoring of SnO for improved transparent conducting ability in photovoltaics. J Mater Chem C. 2016;4:1467–75. doi: 10.1039/C5TC04089B