1.
Goodman JM. Chemical applications of molecular modelling. Cambridge: Royal Society of Chemistry; 1998.
2.
Jensen F. Introduction to computational chemistry. 2nd ed. Chichester: John Wiley & Sons; 2007.
3.
Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. Vol. Computational science. San Diego, Calif: Academic Press; 2002.
4.
Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego: Academic Press; 1996.
5.
Frenkel D, Smit B, Ratner MA. Understanding Molecular Simulation: From Algorithms to Applications. Physics Today. 1997;50(7).
6.
Bladon P, Gorton JE, Hammond RB. Molecular modelling: computational chemistry demystified. Cambridge: RSC Publishing; 2012.
7.
Theory and Applications in Computational Chemistry [Internet]. Available from: http://www.tacc2012.org/Proceedings.html
8.
Lau GV, Hunt PA, Müller EA, Jackson G, Ford IJ. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics. The Journal of Chemical Physics. 2015 Dec 28;143(24).
9.
Tribello GA, Slater B, Salzmann CG. A Blind Structure Prediction of Ice XIV. Journal of the American Chemical Society [Internet]. 2006 Oct;128(39):12594–5. Available from: https://contentstore.cla.co.uk/secure/link?id=24d6c08f-040c-f011-90cc-c5989c4ef87d
10.
Price SL, Reutzel-Edens SM. The potential of computed crystal energy landscapes to aid solid-form development. Drug Discovery Today. 2016 Jun;21(6):912–23.
11.
Silbey RJ, Alberty RA, Bawendi MG, Alberty RA. Alberti & Silbey Chapter on Quantum Chemistry. In: Physical chemistry. 4th ed. Hoboken, N.J.: Wiley; 2005.
12.
Atkins PW, De Paula J. Atkins’ physical chemistry. Tenth edition. Oxford: Oxford University Press; 2014.
13.
Deglmann P, Schäfer A, Lennartz C. Application of quantum calculations in the chemical industry-An overview. International Journal of Quantum Chemistry. 2015 Feb 5;115(3):107–36.
14.
Leach AR. Molecular modelling: principles and applications. Second edition. Harlow, England: Pearson; 2001.
15.
Atkins PW, De Paula J, Friedman R. Quanta, matter, and change: a molecular approach to physical chemistry. Oxford: Oxford University Press; 2009.
16.
Arndt S, Laugel G, Levchenko S, Horn R, Baerns M, Scheffler M, et al. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews. 2011 Oct;53(4):424–514.
17.
Ackermann L, Gale JD, Catlow CRA. Interaction of Methane with a [Li] Center on MgO(100):  HF, Post-HF, and DFT Cluster Model Studies. The Journal of Physical Chemistry B [Internet]. 1997 Nov;101(48):10028–34. Available from: https://contentstore.cla.co.uk/secure/link?id=e5196124-050c-f011-90cc-c5989c4ef87d
18.
C. R. A. Catlow, S. A. French, A. A. Sokol and J. M. Thomas. Computational Approaches to the Determination of Active Site Structures and Reaction Mechanisms in Heterogeneous Catalysts. Philosophical Transactions: Mathematical, Physical and Engineering Sciences [Internet]. 2005;363(1829):913–36. Available from: http://www.jstor.org/stable/30039617?seq=19#page_scan_tab_contents
19.
Stiakaki MAD, Tsipis AC, Tsipis CA, Xanthopoulos CE. Theoretical aspects of methane chemisorption on MgO surfaces. Modelling of impurity-induced trapping of a hole, surface defects and site dependence of methane chemisorption on (MgO)9,12 clusters. Journal of the Chemical Society, Faraday Transactions. 1996;92(15).
20.
Scanlon DO, Walsh A, Morgan BJ, Nolan M, Fearon J, Watson GW. Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. Journal of Physical Chemistry C. 2007 Jun 7;111(22):7971–9.
21.
The Nobel Prize in Chemistry 1998 - Summary [Internet]. Available from: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/advanced.html
22.
John Pople Nobel Lecture - HF methods [Internet]. Available from: https://www.nobelprize.org/uploads/2018/06/pople-lecture.pdf
23.
Walter Kohn Nobel Lecture - DFT [Internet]. Available from: https://www.nobelprize.org/uploads/2018/06/kohn-lecture.pdf
24.
Ganose AM, Scanlon DO. Band gap and work function tailoring of SnO                              for improved transparent conducting ability in photovoltaics. J Mater Chem C. 2016;4(7):1467–75.