1.
Goodman, J.M.: Chemical applications of molecular modelling. Royal Society of Chemistry, Cambridge (1998).
2.
Jensen, F.: Introduction to computational chemistry. John Wiley & Sons, Chichester (2007).
3.
Frenkel, D., Smit, B.: Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego, Calif (2002).
4.
Frenkel, D., Smit, B.: Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego (1996).
5.
Frenkel, D., Smit, B., Ratner, M.A.: Understanding Molecular Simulation: From Algorithms to Applications. Physics Today. 50, (1997). https://doi.org/10.1063/1.881812.
6.
Bladon, P., Gorton, J.E., Hammond, R.B.: Molecular modelling: computational chemistry demystified. RSC Publishing, Cambridge (2012).
7.
Theory and Applications in Computational Chemistry, http://www.tacc2012.org/Proceedings.html.
8.
Lau, G.V., Hunt, P.A., Müller, E.A., Jackson, G., Ford, I.J.: Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics. The Journal of Chemical Physics. 143, (2015). https://doi.org/10.1063/1.4935198.
9.
Tribello, G.A., Slater, B., Salzmann, C.G.: A Blind Structure Prediction of Ice XIV. Journal of the American Chemical Society. 128, 12594–12595 (2006). https://doi.org/10.1021/ja0630902.
10.
Price, S.L., Reutzel-Edens, S.M.: The potential of computed crystal energy landscapes to aid solid-form development. Drug Discovery Today. 21, 912–923 (2016). https://doi.org/10.1016/j.drudis.2016.01.014.
11.
Silbey, R.J., Alberty, R.A., Bawendi, M.G., Alberty, R.A.: Alberti & Silbey Chapter on Quantum Chemistry. In: Physical chemistry. Wiley, Hoboken, N.J. (2005).
12.
Atkins, P.W., De Paula, J.: Atkins’ physical chemistry. Oxford University Press, Oxford (2014).
13.
Deglmann, P., Schäfer, A., Lennartz, C.: Application of quantum calculations in the chemical industry-An overview. International Journal of Quantum Chemistry. 115, 107–136 (2015). https://doi.org/10.1002/qua.24811.
14.
Leach, A.R.: Molecular modelling: principles and applications. Pearson, Harlow, England (2001).
15.
Atkins, P.W., De Paula, J., Friedman, R.: Quanta, matter, and change: a molecular approach to physical chemistry. Oxford University Press, Oxford (2009).
16.
Arndt, S., Laugel, G., Levchenko, S., Horn, R., Baerns, M., Scheffler, M., Schlögl, R., Schomäcker, R.: A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews. 53, 424–514 (2011). https://doi.org/10.1080/01614940.2011.613330.
17.
Ackermann, L., Gale, J.D., Catlow, C.R.A.: Interaction of Methane with a [Li] Center on MgO(100):  HF, Post-HF, and DFT Cluster Model Studies. The Journal of Physical Chemistry B. 101, 10028–10034 (1997). https://doi.org/10.1021/jp972198o.
18.
C. R. A. Catlow, S. A. French, A. A. Sokol and J. M. Thomas: Computational Approaches to the Determination of Active Site Structures and Reaction Mechanisms in Heterogeneous Catalysts. Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 363, 913–936 (2005).
19.
Stiakaki, M.-A.D., Tsipis, A.C., Tsipis, C.A., Xanthopoulos, C.E.: Theoretical aspects of methane chemisorption on MgO surfaces. Modelling of impurity-induced trapping of a hole, surface defects and site dependence of methane chemisorption on (MgO)9,12 clusters. Journal of the Chemical Society, Faraday Transactions. 92, (1996). https://doi.org/10.1039/ft9969202765.
20.
Scanlon, D.O., Walsh, A., Morgan, B.J., Nolan, M., Fearon, J., Watson, G.W.: Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. Journal of Physical Chemistry C. 111, 7971–7979 (2007). https://doi.org/10.1021/jp070200y.
21.
The Nobel Prize in Chemistry 1998 - Summary, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/advanced.html.
22.
John Pople Nobel Lecture - HF methods, https://www.nobelprize.org/uploads/2018/06/pople-lecture.pdf.
23.
Walter Kohn Nobel Lecture - DFT, https://www.nobelprize.org/uploads/2018/06/kohn-lecture.pdf.
24.
Ganose, A.M., Scanlon, D.O.: Band gap and work function tailoring of SnO                              for improved transparent conducting ability in photovoltaics. J. Mater. Chem. C. 4, 1467–1475 (2016). https://doi.org/10.1039/C5TC04089B.