1
Wilhelm S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery 2006;5:835–44. doi:10.1038/nrd2130
2
Smith RA. Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorganic & Medicinal Chemistry Letters 2001;11:2775–8. doi:10.1016/S0960-894X(01)00571-6
3
Kola I, Landis J. Opinion: Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery 2004;3:711–6. doi:10.1038/nrd1470
4
Swinney DC, Anthony J. How were new medicines discovered? Nature Reviews Drug Discovery 2011;10:507–19. doi:10.1038/nrd3480
5
Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nature Reviews Drug Discovery 2011;10:188–95. doi:10.1038/nrd3368
6
Selzer, P. M., Rohwer, A., Marhöfer, R. J. Applied bioinformatics: an introduction. Berlin: : Springer 2008.
7
Xiong, Jin. Essential bioinformatics. New York: : Cambridge University Press 2006.
8
Orengo, Christine Ann, Thornton, Janet M., Jones, David Tudor. Bioinformatics: genes, proteins and computers. Oxford: : BIOS 2003. http://www.vlebooks.com/vleweb/product/openreader?id=UCL&isbn=9780203427828
9
Zvelebil, Marketa J., Baum, Jeremy O. Understanding bioinformatics. London: : Garland Science 2008. https://bibliu.com/app/#/view/books/9781136976964/pdf2htmlex/index.html#page_Cover
10
Gu, Jenny, Bourne, Philip E. Structural bioinformatics. 2nd ed. Hoboken, N.J.: : Wiley 2008.
11
Petsko, Gregory A., Ringe, Dagmar. Protein structure and function. London: : New Science 2004.
12
Nelson, David L., Cox, Michael M., Lehninger, Albert L. Lehninger principles of biochemistry. 5th ed. Basingstoke: : W.H. Freeman 2008.
13
Chandra N. Computational systems approach for drug target discovery. Expert Opinion on Drug Discovery 2009;4:1221–36. doi:10.1517/17460440903380422
14
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nature Reviews Drug Discovery 2006;5:993–6. doi:10.1038/nrd2199
15
Fitt R, Nodder E. Setting the threshold for industrial application: the UK diverges from Europe. Journal of Intellectual Property Law & Practice 2010;5:560–5. doi:10.1093/jiplp/jpq061
16
Ikura M, Inouye M. NMR structure of the histidine kinase domain of the : E. coli: osmosensor EnvZ : Article : Nature. Nature 1998;396:88–92. doi:10.1038/23968
17
Krohn KA, Link JM. Interpreting enzyme and receptor kinetics: keeping it simple, but not too simple. Nuclear Medicine and Biology 2003;30:819–26. doi:10.1016/S0969-8051(03)00132-X
18
Jarnagin K. Receptor Binding in Drug Discovery. In: eLS.
19
Jarnagin K. Receptor Binding in Drug Discovery. Chichester: : John Wiley & Sons, Ltd 2001. doi:10.1038/npg.els.0000056
20
Cornish-Bowden, Athel. Fundamentals of enzyme kinetics. 3rd ed. London: : Portland 2004.
21
Copeland, Robert Allen. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. Hoboken, N.J.: : J. Wiley 2005. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118540398
22
Gibb, Alasdair J., Foreman, John C., Johansen, Torben. Textbook of receptor pharmacology. 3rd ed. Boca Raton, FL: : CRC Press 2011.
23
Rang, H. P., Dale, M. Maureen. Pharmacology. 9th ed. Edinburgh: : Churchill Livingstone 2019. https://elsevierelibrary.co.uk/product/9780702074462
24
Colquhoun D. Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. British Journal of Pharmacology 1998;125:923–47. doi:10.1038/sj.bjp.0702164
25
Khawaja X, Dunlop J, Kowal D. Scintillation proximity assay in lead discovery. Expert Opinion on Drug Discovery 2008;3:1267–80. doi:10.1517/17460441.3.11.1267
26
Kenakin TP. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nature Reviews Drug Discovery 2009;8:617–26. doi:10.1038/nrd2838
27
Dunlop J. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nature Reviews Drug Discovery 2008;7:358–68. doi:10.1038/nrd2552
28
Hopkins AL, Groom CR. Opinion: The druggable genome. Nature Reviews Drug Discovery 2002;1:727–30. doi:10.1038/nrd892
29
Richard M. Durbin. A map of human genome variation from population-scale sequencing. Nature 2010;467:1061–73. doi:10.1038/nature09534
30
Thomas, Gareth. Fundamentals of medicinal chemistry. 2003.
31
Patrick, Graham L. An introduction to medicinal chemistry. 2017.
32
Leach, Andrew R., Gillet, Valerie J. An introduction to chemoinformatics. 2003.
33
Engel, Thomas, Gasteiger, J. Chemoinformatics: a textbook. 2003.
34
Gasteiger, J. Handbook of chemoinformatics: from data to knowledge. 2003. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618279
35
Bissantz C, Kuhn B, Stahl M. A Medicinal Chemist’s Guide to Molecular Interactions. Journal of Medicinal Chemistry 2010;53:5061–84. doi:10.1021/jm100112j
36
Matter H. Selecting Optimally Diverse Compounds from Structure Databases: A Validation Study of Two-Dimensional and Three-Dimensional Molecular Descriptors. Journal of Medicinal Chemistry 1997;40:1219–29. doi:10.1021/jm960352+
37
Willett P, Barnard JM, Downs GM. Chemical Similarity Searching. Journal of Chemical Information and Modeling 1998;38:983–96. doi:10.1021/ci9800211
38
Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Current Opinion in Chemical Biology 2010;14:347–61. doi:10.1016/j.cbpa.2010.02.018
39
Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 1997;23:3–25. doi:10.1016/S0169-409X(96)00423-1
40
Veber DF, Johnson SR, Cheng H-Y, et al. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry 2002;45:2615–23. doi:10.1021/jm020017n
41
Blake JF. Identification and Evaluation of Molecular Properties Related to Preclinical Optimization and Clinical Fate. Medicinal Chemistry 2005;1:649–55. doi:10.2174/157340605774598081
42
Beck A, Wurch T, Bailly C, et al. Strategies and challenges for the next generation of therapeutic antibodies. Nature Reviews Immunology 2010;10:345–52. doi:10.1038/nri2747
43
Bradbury ARM, Sidhu S, Dübel S, et al. Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology 2011;29:245–54. doi:10.1038/nbt.1791
44
Nagorsen D, Baeuerle PA. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Experimental Cell Research 2011;317:1255–60. doi:10.1016/j.yexcr.2011.03.010
45
Pillay V, Gan HK, Scott AM. Antibodies in oncology. New Biotechnology 2011;28:518–29. doi:10.1016/j.nbt.2011.03.021
46
Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nature Reviews Drug Discovery 2006;5:147–59. doi:10.1038/nrd1957
47
Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews Immunology 2010;10:317–27. doi:10.1038/nri2744
48
Ducry L, Stump B. Antibody−drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjugate chemistry 2010;21:5–13. doi:10.1021/bc9002019
49
Alley SC, Okeley NM, Senter PD. Antibody–drug conjugates: targeted drug delivery for cancer. Current Opinion in Chemical Biology 2010;14:529–37. doi:10.1016/j.cbpa.2010.06.170
50
Webb S. Pharma interest surges in antibody drug conjugates. Nature Biotechnology 2011;29:297–8. doi:10.1038/nbt0411-297
51
Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nature Biotechnology 2005;23:1126–36. doi:10.1038/nbt1142
52
Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature 2009;457:405–12. doi:10.1038/nature07755
53
Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457:426–33. doi:10.1038/nature07758
54
Grimm D. Small silencing RNAs: State-of-the-art. Advanced Drug Delivery Reviews 2009;61:672–703. doi:10.1016/j.addr.2009.05.002
55
Vaishnaw AK, Gollob J, Gamba-Vitalo C, et al. A status report on RNAi therapeutics. Silence 2010;1. doi:10.1186/1758-907X-1-14
56
Shen J, Samul R, Silva RL, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Therapy 2005;13:225–34. doi:10.1038/sj.gt.3302641
57
Kalluri R, Kanasaki K. RNA interference: Generic block on angiogenesis. Nature 2008;452:543–5. doi:10.1038/452543a
58
Human embryonic stem cells: Derivation, culture, and differentiation: A review.
59
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes & Development 2010;24:2239–63. doi:10.1101/gad.1963910
60
Watt FM, Driskell RR. The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences 2010;365:155–63. doi:10.1098/rstb.2009.0149
61
Brignier AC, Gewirtz AM. Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology 2010;125:S336–44. doi:10.1016/j.jaci.2009.09.032
62
Lledo P-M, Merkle FT, Alvarez-Buylla A. Origin and function of olfactory bulb interneuron diversity. Trends in Neurosciences 2008;31:392–400. doi:10.1016/j.tins.2008.05.006
63
Murray CW. Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency. Journal of Medicinal Chemistry 2010;53:5942–55. doi:10.1021/jm100059d
64
Hopkins AL, Groom CR, Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discovery Today 2004;9:430–1. doi:10.1016/S1359-6446(04)03069-7
65
Congreve M, Chessari G, Tisi D, et al. Recent Developments in Fragment-Based Drug Discovery. Journal of Medicinal Chemistry 2008;51:3661–80. doi:10.1021/jm8000373
66
Murray CW, Rees DC. The rise of fragment-based drug discovery. Nature Chemistry 2009;1:187–92. doi:10.1038/nchem.217
67
Baurin N, Aboul-Ela F, Barril X, et al. Design and Characterization of Libraries of Molecular Fragments for Use in NMR Screening against Protein Targets. Journal of Chemical Information and Modeling 2004;44:2157–66. doi:10.1021/ci049806z
68
Woodhead AJ. Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design. Journal of Medicinal Chemistry 2010;53:5956–69. doi:10.1021/jm100060b
69
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. Journal of Health Economics 2003;22:151–85. doi:10.1016/S0167-6296(02)00126-1