1.
Wilhelm, S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery 5, 835–844 (2006).
2.
Smith, R. A. Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorganic & Medicinal Chemistry Letters 11, 2775–2778 (2001).
3.
Kola, I. & Landis, J. Opinion: Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery 3, 711–716 (2004).
4.
Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Reviews Drug Discovery 10, 507–519 (2011).
5.
Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nature Reviews Drug Discovery 10, 188–195 (2011).
6.
Selzer, P. M., Rohwer, A., & Marhöfer, R. J. Applied bioinformatics: an introduction. (Springer, 2008).
7.
Xiong, Jin. Essential bioinformatics. (Cambridge University Press, 2006).
8.
Orengo, Christine Ann, Thornton, Janet M., & Jones, David Tudor. Bioinformatics: genes, proteins and computers. (BIOS, 2003).
9.
Zvelebil, Marketa J. & Baum, Jeremy O. Understanding bioinformatics. (Garland Science, 2008).
10.
Gu, Jenny & Bourne, Philip E. Structural bioinformatics. vol. Methods of biochemical analysis (Wiley, 2008).
11.
Petsko, Gregory A. & Ringe, Dagmar. Protein structure and function. vol. Primers in biology (New Science, 2004).
12.
Nelson, David L., Cox, Michael M., & Lehninger, Albert L. Lehninger principles of biochemistry. (W.H. Freeman, 2008).
13.
Chandra, N. Computational systems approach for drug target discovery. Expert Opinion on Drug Discovery 4, 1221–1236 (2009).
14.
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Reviews Drug Discovery 5, 993–996 (2006).
15.
Fitt, R. & Nodder, E. Setting the threshold for industrial application: the UK diverges from Europe. Journal of Intellectual Property Law & Practice 5, 560–565 (2010).
16.
Ikura, M. & Inouye, M. NMR structure of the histidine kinase domain of the : E. coli: osmosensor EnvZ : Article : Nature. Nature 396, 88–92 (1998).
17.
Krohn, K. A. & Link, J. M. Interpreting enzyme and receptor kinetics: keeping it simple, but not too simple. Nuclear Medicine and Biology 30, 819–826 (2003).
18.
Jarnagin, K. Receptor Binding in Drug Discovery. in eLS.
19.
Jarnagin, K. Receptor Binding in Drug Discovery. Encyclopedia of Life Sciences (John Wiley & Sons, Ltd, 2001). doi:10.1038/npg.els.0000056.
20.
Cornish-Bowden, Athel. Fundamentals of enzyme kinetics. (Portland, 2004).
21.
Copeland, Robert Allen. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. vol. Methods of biochemical analysis (J. Wiley, 2005).
22.
Gibb, Alasdair J., Foreman, John C., & Johansen, Torben. Textbook of receptor pharmacology. (CRC Press, 2011).
23.
Rang, H. P. & Dale, M. Maureen. Pharmacology. (Churchill Livingstone, 2019).
24.
Colquhoun, D. Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. British Journal of Pharmacology 125, 923–947 (1998).
25.
Khawaja, X., Dunlop, J. & Kowal, D. Scintillation proximity assay in lead discovery. Expert Opinion on Drug Discovery 3, 1267–1280 (2008).
26.
Kenakin, T. P. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nature Reviews Drug Discovery 8, 617–626 (2009).
27.
Dunlop, J. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nature Reviews Drug Discovery 7, 358–368 (2008).
28.
Hopkins, A. L. & Groom, C. R. Opinion: The druggable genome. Nature Reviews Drug Discovery 1, 727–730 (2002).
29.
Richard M. Durbin. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
30.
Thomas, Gareth. Fundamentals of medicinal chemistry. (2003).
31.
Patrick, Graham L. An introduction to medicinal chemistry. (2017).
32.
Leach, Andrew R. & Gillet, Valerie J. An introduction to chemoinformatics. (2003).
33.
Engel, Thomas & Gasteiger, J. Chemoinformatics: a textbook. (2003).
34.
Gasteiger, J. Handbook of chemoinformatics: from data to knowledge. (2003).
35.
Bissantz, C., Kuhn, B. & Stahl, M. A Medicinal Chemist’s Guide to Molecular Interactions. Journal of Medicinal Chemistry 53, 5061–5084 (2010).
36.
Matter, H. Selecting Optimally Diverse Compounds from Structure Databases:  A Validation Study of Two-Dimensional and Three-Dimensional Molecular Descriptors. Journal of Medicinal Chemistry 40, 1219–1229 (1997).
37.
Willett, P., Barnard, J. M. & Downs, G. M. Chemical Similarity Searching. Journal of Chemical Information and Modeling 38, 983–996 (1998).
38.
Welsch, M. E., Snyder, S. A. & Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Current Opinion in Chemical Biology 14, 347–361 (2010).
39.
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 23, 3–25 (1997).
40.
Veber, D. F. et al. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry 45, 2615–2623 (2002).
41.
Blake, J. F. Identification and Evaluation of Molecular Properties Related to Preclinical Optimization and Clinical Fate. Medicinal Chemistry 1, 649–655 (2005).
42.
Beck, A., Wurch, T., Bailly, C. & Corvaia, N. Strategies and challenges for the next generation of therapeutic antibodies. Nature Reviews Immunology 10, 345–352 (2010).
43.
Bradbury, A. R. M., Sidhu, S., Dübel, S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology 29, 245–254 (2011).
44.
Nagorsen, D. & Baeuerle, P. A. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Experimental Cell Research 317, 1255–1260 (2011).
45.
Pillay, V., Gan, H. K. & Scott, A. M. Antibodies in oncology. New Biotechnology 28, 518–529 (2011).
46.
Schrama, D., Reisfeld, R. A. & Becker, J. C. Antibody targeted drugs as cancer therapeutics. Nature Reviews Drug Discovery 5, 147–159 (2006).
47.
Weiner, L. M., Surana, R. & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews Immunology 10, 317–327 (2010).
48.
Ducry, L. & Stump, B. Antibody−drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjugate chemistry 21, 5–13 (2010).
49.
Alley, S. C., Okeley, N. M. & Senter, P. D. Antibody–drug conjugates: targeted drug delivery for cancer. Current Opinion in Chemical Biology 14, 529–537 (2010).
50.
Webb, S. Pharma interest surges in antibody drug conjugates. Nature Biotechnology 29, 297–298 (2011).
51.
Holliger, P. & Hudson, P. J. Engineered antibody fragments and the rise of single domains. Nature Biotechnology 23, 1126–1136 (2005).
52.
Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412 (2009).
53.
Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).
54.
Grimm, D. Small silencing RNAs: State-of-the-art. Advanced Drug Delivery Reviews 61, 672–703 (2009).
55.
Vaishnaw, A. K. et al. A status report on RNAi therapeutics. Silence 1, (2010).
56.
Shen, J. et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Therapy 13, 225–234 (2005).
57.
Kalluri, R. & Kanasaki, K. RNA interference: Generic block on angiogenesis. Nature 452, 543–545 (2008).
58.
Human embryonic stem cells: Derivation, culture, and differentiation: A review.
59.
Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes & Development 24, 2239–2263 (2010).
60.
Watt, F. M. & Driskell, R. R. The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 155–163 (2010).
61.
Brignier, A. C. & Gewirtz, A. M. Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology 125, S336–S344 (2010).
62.
Lledo, P.-M., Merkle, F. T. & Alvarez-Buylla, A. Origin and function of olfactory bulb interneuron diversity. Trends in Neurosciences 31, 392–400 (2008).
63.
Murray, C. W. Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency. Journal of Medicinal Chemistry 53, 5942–5955 (2010).
64.
Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discovery Today 9, 430–431 (2004).
65.
Congreve, M., Chessari, G., Tisi, D. & Woodhead, A. J. Recent Developments in Fragment-Based Drug Discovery. Journal of Medicinal Chemistry 51, 3661–3680 (2008).
66.
Murray, C. W. & Rees, D. C. The rise of fragment-based drug discovery. Nature Chemistry 1, 187–192 (2009).
67.
Baurin, N. et al. Design and Characterization of Libraries of Molecular Fragments for Use in NMR Screening against Protein Targets. Journal of Chemical Information and Modeling 44, 2157–2166 (2004).
68.
Woodhead, A. J. Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design. Journal of Medicinal Chemistry 53, 5956–5969 (2010).
69.
DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. Journal of Health Economics 22, 151–185 (2003).