Alley, S.C., Okeley, N.M. and Senter, P.D. (2010) ‘Antibody–drug conjugates: targeted drug delivery for cancer’, Current Opinion in Chemical Biology, 14(4), pp. 529–537. Available at: https://doi.org/10.1016/j.cbpa.2010.06.170.
Baurin, N. et al. (2004) ‘Design and Characterization of Libraries of Molecular Fragments for Use in NMR Screening against Protein Targets’, Journal of Chemical Information and Modeling, 44(6), pp. 2157–2166. Available at: https://doi.org/10.1021/ci049806z.
Beck, A. et al. (2010) ‘Strategies and challenges for the next generation of therapeutic antibodies’, Nature Reviews Immunology, 10(5), pp. 345–352. Available at: https://doi.org/10.1038/nri2747.
Bissantz, C., Kuhn, B. and Stahl, M. (2010) ‘A Medicinal Chemist’s Guide to Molecular Interactions’, Journal of Medicinal Chemistry, 53(14), pp. 5061–5084. Available at: https://doi.org/10.1021/jm100112j.
Blake, J.F. (2005) ‘Identification and Evaluation of Molecular Properties Related to Preclinical Optimization and Clinical Fate’, Medicinal Chemistry, 1(6), pp. 649–655. Available at: https://doi.org/10.2174/157340605774598081.
Bradbury, A.R.M. et al. (2011) ‘Beyond natural antibodies: the power of in vitro display technologies’, Nature Biotechnology, 29(3), pp. 245–254. Available at: https://doi.org/10.1038/nbt.1791.
Brignier, A.C. and Gewirtz, A.M. (2010) ‘Embryonic and adult stem cell therapy’, Journal of Allergy and Clinical Immunology, 125(2), pp. S336–S344. Available at: https://doi.org/10.1016/j.jaci.2009.09.032.
Castanotto, D. and Rossi, J.J. (2009) ‘The promises and pitfalls of RNA-interference-based therapeutics’, Nature, 457(7228), pp. 426–433. Available at: https://doi.org/10.1038/nature07758.
Chandra, N. (2009) ‘Computational systems approach for drug target discovery’, Expert Opinion on Drug Discovery, 4(12), pp. 1221–1236. Available at: https://doi.org/10.1517/17460440903380422.
Colquhoun, D. (1998) ‘Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors’, British Journal of Pharmacology, 125(5), pp. 923–947. Available at: https://doi.org/10.1038/sj.bjp.0702164.
Congreve, M. et al. (2008) ‘Recent Developments in Fragment-Based Drug Discovery’, Journal of Medicinal Chemistry, 51(13), pp. 3661–3680. Available at: https://doi.org/10.1021/jm8000373.
Copeland, Robert Allen (2005) Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. Hoboken, N.J.: J. Wiley. Available at: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118540398.
Cornish-Bowden, Athel (2004) Fundamentals of enzyme kinetics. 3rd ed. London: Portland.
DiMasi, J.A., Hansen, R.W. and Grabowski, H.G. (2003) ‘The price of innovation: new estimates of drug development costs’, Journal of Health Economics, 22(2), pp. 151–185. Available at: https://doi.org/10.1016/S0167-6296(02)00126-1.
Ducry, L. and Stump, B. (2010) ‘Antibody−drug conjugates: Linking cytotoxic payloads to monoclonal antibodies’, Bioconjugate chemistry, 21(1), pp. 5–13. Available at: https://doi.org/10.1021/bc9002019.
Dunlop, J. (2008) ‘High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology’, Nature Reviews Drug Discovery, 7(4), pp. 358–368. Available at: https://doi.org/10.1038/nrd2552.
Engel, Thomas and Gasteiger, J. (2003) Chemoinformatics: a textbook.
Fitt, R. and Nodder, E. (2010) ‘Setting the threshold for industrial application: the UK diverges from Europe’, Journal of Intellectual Property Law & Practice, 5(8), pp. 560–565. Available at: https://doi.org/10.1093/jiplp/jpq061.
Gasteiger, J. (2003) Handbook of chemoinformatics: from data to knowledge. Available at: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618279.
Gibb, Alasdair J., Foreman, John C., and Johansen, Torben (2011) Textbook of receptor pharmacology. 3rd ed. Boca Raton, FL: CRC Press.
Grimm, D. (2009) ‘Small silencing RNAs: State-of-the-art’, Advanced Drug Delivery Reviews, 61(9), pp. 672–703. Available at: https://doi.org/10.1016/j.addr.2009.05.002.
Gu, Jenny and Bourne, Philip E. (2008) Structural bioinformatics. 2nd ed. Hoboken, N.J.: Wiley.
Holliger, P. and Hudson, P.J. (2005) ‘Engineered antibody fragments and the rise of single domains’, Nature Biotechnology, 23(9), pp. 1126–1136. Available at: https://doi.org/10.1038/nbt1142.
Hopkins, A.L. and Groom, C.R. (2002) ‘Opinion: The druggable genome’, Nature Reviews Drug Discovery, 1(9), pp. 727–730. Available at: https://doi.org/10.1038/nrd892.
Hopkins, A.L., Groom, C.R. and Alex, A. (2004) ‘Ligand efficiency: a useful metric for lead selection’, Drug Discovery Today, 9(10), pp. 430–431. Available at: https://doi.org/10.1016/S1359-6446(04)03069-7.
Human embryonic stem cells: Derivation, culture, and differentiation: A review (no date).
Ikura, M. and Inouye, M. (1998) ‘NMR structure of the histidine kinase domain of the : E. coli: osmosensor EnvZ : Article : Nature’, Nature, 396(6706), pp. 88–92. Available at: https://doi.org/10.1038/23968.
Jarnagin, K. (2001) Receptor Binding in Drug Discovery, Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd. Available at: https://doi.org/10.1038/npg.els.0000056.
Jarnagin, K. (no date) ‘Receptor Binding in Drug Discovery’, in eLS.
Jinek, M. and Doudna, J.A. (2009) ‘A three-dimensional view of the molecular machinery of RNA interference’, Nature, 457(7228), pp. 405–412. Available at: https://doi.org/10.1038/nature07755.
Kalluri, R. and Kanasaki, K. (2008) ‘RNA interference: Generic block on angiogenesis’, Nature, 452(7187), pp. 543–545. Available at: https://doi.org/10.1038/452543a.
Kenakin, T.P. (2009) ‘Cellular assays as portals to seven-transmembrane receptor-based drug discovery’, Nature Reviews Drug Discovery, 8(8), pp. 617–626. Available at: https://doi.org/10.1038/nrd2838.
Khawaja, X., Dunlop, J. and Kowal, D. (2008) ‘Scintillation proximity assay in lead discovery’, Expert Opinion on Drug Discovery, 3(11), pp. 1267–1280. Available at: https://doi.org/10.1517/17460441.3.11.1267.
Kola, I. and Landis, J. (2004) ‘Opinion: Can the pharmaceutical industry reduce attrition rates?’, Nature Reviews Drug Discovery, 3(8), pp. 711–716. Available at: https://doi.org/10.1038/nrd1470.
Krohn, K.A. and Link, J.M. (2003) ‘Interpreting enzyme and receptor kinetics: keeping it simple, but not too simple’, Nuclear Medicine and Biology, 30(8), pp. 819–826. Available at: https://doi.org/10.1016/S0969-8051(03)00132-X.
Leach, Andrew R. and Gillet, Valerie J. (2003) An introduction to chemoinformatics.
Lipinski, C.A. et al. (1997) ‘Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings’, Advanced Drug Delivery Reviews, 23(1–3), pp. 3–25. Available at: https://doi.org/10.1016/S0169-409X(96)00423-1.
Lledo, P.-M., Merkle, F.T. and Alvarez-Buylla, A. (2008) ‘Origin and function of olfactory bulb interneuron diversity’, Trends in Neurosciences, 31(8), pp. 392–400. Available at: https://doi.org/10.1016/j.tins.2008.05.006.
Macarron, R. et al. (2011) ‘Impact of high-throughput screening in biomedical research’, Nature Reviews Drug Discovery, 10(3), pp. 188–195. Available at: https://doi.org/10.1038/nrd3368.
Matter, H. (1997) ‘Selecting Optimally Diverse Compounds from Structure Databases: A Validation Study of Two-Dimensional and Three-Dimensional Molecular Descriptors’, Journal of Medicinal Chemistry, 40(8), pp. 1219–1229. Available at: https://doi.org/10.1021/jm960352+.
Murray, C.W. (2010) ‘Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency’, Journal of Medicinal Chemistry, 53(16), pp. 5942–5955. Available at: https://doi.org/10.1021/jm100059d.
Murray, C.W. and Rees, D.C. (2009) ‘The rise of fragment-based drug discovery’, Nature Chemistry, 1(3), pp. 187–192. Available at: https://doi.org/10.1038/nchem.217.
Nagorsen, D. and Baeuerle, P.A. (2011) ‘Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab’, Experimental Cell Research, 317(9), pp. 1255–1260. Available at: https://doi.org/10.1016/j.yexcr.2011.03.010.
Nelson, David L., Cox, Michael M., and Lehninger, Albert L. (2008) Lehninger principles of biochemistry. 5th ed. Basingstoke: W.H. Freeman.
Orengo, Christine Ann, Thornton, Janet M., and Jones, David Tudor (2003) Bioinformatics: genes, proteins and computers. Oxford: BIOS. Available at: http://www.vlebooks.com/vleweb/product/openreader?id=UCL&isbn=9780203427828.
Overington, J.P., Al-Lazikani, B. and Hopkins, A.L. (2006) ‘How many drug targets are there?’, Nature Reviews Drug Discovery, 5(12), pp. 993–996. Available at: https://doi.org/10.1038/nrd2199.
Patrick, Graham L. (2017) An introduction to medicinal chemistry.
Petsko, Gregory A. and Ringe, Dagmar (2004) Protein structure and function. London: New Science.
Pillay, V., Gan, H.K. and Scott, A.M. (2011) ‘Antibodies in oncology’, New Biotechnology, 28(5), pp. 518–529. Available at: https://doi.org/10.1016/j.nbt.2011.03.021.
Rang, H. P. and Dale, M. Maureen (2019) Pharmacology. 9th ed. Edinburgh: Churchill Livingstone. Available at: https://elsevierelibrary.co.uk/product/9780702074462.
Richard M. Durbin (2010) ‘A map of human genome variation from population-scale sequencing’, Nature, 467(7319), pp. 1061–1073. Available at: https://doi.org/10.1038/nature09534.
Schrama, D., Reisfeld, R.A. and Becker, J.C. (2006) ‘Antibody targeted drugs as cancer therapeutics’, Nature Reviews Drug Discovery, 5(2), pp. 147–159. Available at: https://doi.org/10.1038/nrd1957.
Selzer, P. M., Rohwer, A., and Marhöfer, R. J. (2008) Applied bioinformatics: an introduction. Berlin: Springer.
Shen, J. et al. (2005) ‘Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1’, Gene Therapy, 13(3), pp. 225–234. Available at: https://doi.org/10.1038/sj.gt.3302641.
Smith, R.A. (2001) ‘Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach’, Bioorganic & Medicinal Chemistry Letters, 11(20), pp. 2775–2778. Available at: https://doi.org/10.1016/S0960-894X(01)00571-6.
Stadtfeld, M. and Hochedlinger, K. (2010) ‘Induced pluripotency: history, mechanisms, and applications’, Genes & Development, 24(20), pp. 2239–2263. Available at: https://doi.org/10.1101/gad.1963910.
Swinney, D.C. and Anthony, J. (2011) ‘How were new medicines discovered?’, Nature Reviews Drug Discovery, 10(7), pp. 507–519. Available at: https://doi.org/10.1038/nrd3480.
Thomas, Gareth (2003) Fundamentals of medicinal chemistry.
Vaishnaw, A.K. et al. (2010) ‘A status report on RNAi therapeutics’, Silence, 1(1). Available at: https://doi.org/10.1186/1758-907X-1-14.
Veber, D.F. et al. (2002) ‘Molecular Properties That Influence the Oral Bioavailability of Drug Candidates’, Journal of Medicinal Chemistry, 45(12), pp. 2615–2623. Available at: https://doi.org/10.1021/jm020017n.
Watt, F.M. and Driskell, R.R. (2010) ‘The therapeutic potential of stem cells’, Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), pp. 155–163. Available at: https://doi.org/10.1098/rstb.2009.0149.
Webb, S. (2011) ‘Pharma interest surges in antibody drug conjugates’, Nature Biotechnology, 29(4), pp. 297–298. Available at: https://doi.org/10.1038/nbt0411-297.
Weiner, L.M., Surana, R. and Wang, S. (2010) ‘Monoclonal antibodies: versatile platforms for cancer immunotherapy’, Nature Reviews Immunology, 10(5), pp. 317–327. Available at: https://doi.org/10.1038/nri2744.
Welsch, M.E., Snyder, S.A. and Stockwell, B.R. (2010) ‘Privileged scaffolds for library design and drug discovery’, Current Opinion in Chemical Biology, 14(3), pp. 347–361. Available at: https://doi.org/10.1016/j.cbpa.2010.02.018.
Wilhelm, S. (2006) ‘Discovery and development of sorafenib: a multikinase inhibitor for treating cancer’, Nature Reviews Drug Discovery, 5(10), pp. 835–844. Available at: https://doi.org/10.1038/nrd2130.
Willett, P., Barnard, J.M. and Downs, G.M. (1998) ‘Chemical Similarity Searching’, Journal of Chemical Information and Modeling, 38(6), pp. 983–996. Available at: https://doi.org/10.1021/ci9800211.
Woodhead, A.J. (2010) ‘Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design’, Journal of Medicinal Chemistry, 53(16), pp. 5956–5969. Available at: https://doi.org/10.1021/jm100060b.
Xiong, Jin (2006) Essential bioinformatics. New York: Cambridge University Press.
Zvelebil, Marketa J. and Baum, Jeremy O. (2008) Understanding bioinformatics. London: Garland Science. Available at: https://bibliu.com/app/#/view/books/9781136976964/pdf2htmlex/index.html#page_Cover.