1.
Wilhelm, S.: Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery. 5, 835–844 (2006). https://doi.org/10.1038/nrd2130.
2.
Smith, R.A.: Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorganic & Medicinal Chemistry Letters. 11, 2775–2778 (2001). https://doi.org/10.1016/S0960-894X(01)00571-6.
3.
Kola, I., Landis, J.: Opinion: Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery. 3, 711–716 (2004). https://doi.org/10.1038/nrd1470.
4.
Swinney, D.C., Anthony, J.: How were new medicines discovered? Nature Reviews Drug Discovery. 10, 507–519 (2011). https://doi.org/10.1038/nrd3480.
5.
Macarron, R., Banks, M.N., Bojanic, D., Burns, D.J., Cirovic, D.A., Garyantes, T., Green, D.V.S., Hertzberg, R.P., Janzen, W.P., Paslay, J.W., Schopfer, U., Sittampalam, G.S.: Impact of high-throughput screening in biomedical research. Nature Reviews Drug Discovery. 10, 188–195 (2011). https://doi.org/10.1038/nrd3368.
6.
Selzer, P. M., Rohwer, A., Marhöfer, R. J.: Applied bioinformatics: an introduction. Springer, Berlin (2008).
7.
Xiong, Jin: Essential bioinformatics. Cambridge University Press, New York (2006).
8.
Orengo, Christine Ann, Thornton, Janet M., Jones, David Tudor: Bioinformatics: genes, proteins and computers. BIOS, Oxford (2003).
9.
Zvelebil, Marketa J., Baum, Jeremy O.: Understanding bioinformatics. Garland Science, London (2008).
10.
Gu, Jenny, Bourne, Philip E.: Structural bioinformatics. Wiley, Hoboken, N.J. (2008).
11.
Petsko, Gregory A., Ringe, Dagmar: Protein structure and function. New Science, London (2004).
12.
Nelson, David L., Cox, Michael M., Lehninger, Albert L.: Lehninger principles of biochemistry. W.H. Freeman, Basingstoke (2008).
13.
Chandra, N.: Computational systems approach for drug target discovery. Expert Opinion on Drug Discovery. 4, 1221–1236 (2009). https://doi.org/10.1517/17460440903380422.
14.
Overington, J.P., Al-Lazikani, B., Hopkins, A.L.: How many drug targets are there? Nature Reviews Drug Discovery. 5, 993–996 (2006). https://doi.org/10.1038/nrd2199.
15.
Fitt, R., Nodder, E.: Setting the threshold for industrial application: the UK diverges from Europe. Journal of Intellectual Property Law & Practice. 5, 560–565 (2010). https://doi.org/10.1093/jiplp/jpq061.
16.
Ikura, M., Inouye, M.: NMR structure of the histidine kinase domain of the : E. coli: osmosensor EnvZ : Article : Nature. Nature. 396, 88–92 (1998). https://doi.org/10.1038/23968.
17.
Krohn, K.A., Link, J.M.: Interpreting enzyme and receptor kinetics: keeping it simple, but not too simple. Nuclear Medicine and Biology. 30, 819–826 (2003). https://doi.org/10.1016/S0969-8051(03)00132-X.
18.
Jarnagin, K.: Receptor Binding in Drug Discovery. In: eLS.
19.
Jarnagin, K.: Receptor Binding in Drug Discovery. John Wiley & Sons, Ltd, Chichester (2001). https://doi.org/10.1038/npg.els.0000056.
20.
Cornish-Bowden, Athel: Fundamentals of enzyme kinetics. Portland, London (2004).
21.
Copeland, Robert Allen: Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. J. Wiley, Hoboken, N.J. (2005).
22.
Gibb, Alasdair J., Foreman, John C., Johansen, Torben: Textbook of receptor pharmacology. CRC Press, Boca Raton, FL (2011).
23.
Rang, H. P., Dale, M. Maureen: Pharmacology. Churchill Livingstone, Edinburgh (2019).
24.
Colquhoun, D.: Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. British Journal of Pharmacology. 125, 923–947 (1998). https://doi.org/10.1038/sj.bjp.0702164.
25.
Khawaja, X., Dunlop, J., Kowal, D.: Scintillation proximity assay in lead discovery. Expert Opinion on Drug Discovery. 3, 1267–1280 (2008). https://doi.org/10.1517/17460441.3.11.1267.
26.
Kenakin, T.P.: Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nature Reviews Drug Discovery. 8, 617–626 (2009). https://doi.org/10.1038/nrd2838.
27.
Dunlop, J.: High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nature Reviews Drug Discovery. 7, 358–368 (2008). https://doi.org/10.1038/nrd2552.
28.
Hopkins, A.L., Groom, C.R.: Opinion: The druggable genome. Nature Reviews Drug Discovery. 1, 727–730 (2002). https://doi.org/10.1038/nrd892.
29.
Richard M. Durbin: A map of human genome variation from population-scale sequencing. Nature. 467, 1061–1073 (2010). https://doi.org/10.1038/nature09534.
30.
Thomas, Gareth: Fundamentals of medicinal chemistry. (2003).
31.
Patrick, Graham L.: An introduction to medicinal chemistry. (2017).
32.
Leach, Andrew R., Gillet, Valerie J.: An introduction to chemoinformatics. (2003).
33.
Engel, Thomas, Gasteiger, J.: Chemoinformatics: a textbook. (2003).
34.
Gasteiger, J.: Handbook of chemoinformatics: from data to knowledge. (2003).
35.
Bissantz, C., Kuhn, B., Stahl, M.: A Medicinal Chemist’s Guide to Molecular Interactions. Journal of Medicinal Chemistry. 53, 5061–5084 (2010). https://doi.org/10.1021/jm100112j.
36.
Matter, H.: Selecting Optimally Diverse Compounds from Structure Databases: A Validation Study of Two-Dimensional and Three-Dimensional Molecular Descriptors. Journal of Medicinal Chemistry. 40, 1219–1229 (1997). https://doi.org/10.1021/jm960352+.
37.
Willett, P., Barnard, J.M., Downs, G.M.: Chemical Similarity Searching. Journal of Chemical Information and Modeling. 38, 983–996 (1998). https://doi.org/10.1021/ci9800211.
38.
Welsch, M.E., Snyder, S.A., Stockwell, B.R.: Privileged scaffolds for library design and drug discovery. Current Opinion in Chemical Biology. 14, 347–361 (2010). https://doi.org/10.1016/j.cbpa.2010.02.018.
39.
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 23, 3–25 (1997). https://doi.org/10.1016/S0169-409X(96)00423-1.
40.
Veber, D.F., Johnson, S.R., Cheng, H.-Y., Smith, B.R., Ward, K.W., Kopple, K.D.: Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry. 45, 2615–2623 (2002). https://doi.org/10.1021/jm020017n.
41.
Blake, J.F.: Identification and Evaluation of Molecular Properties Related to Preclinical Optimization and Clinical Fate. Medicinal Chemistry. 1, 649–655 (2005). https://doi.org/10.2174/157340605774598081.
42.
Beck, A., Wurch, T., Bailly, C., Corvaia, N.: Strategies and challenges for the next generation of therapeutic antibodies. Nature Reviews Immunology. 10, 345–352 (2010). https://doi.org/10.1038/nri2747.
43.
Bradbury, A.R.M., Sidhu, S., Dübel, S., McCafferty, J.: Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology. 29, 245–254 (2011). https://doi.org/10.1038/nbt.1791.
44.
Nagorsen, D., Baeuerle, P.A.: Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Experimental Cell Research. 317, 1255–1260 (2011). https://doi.org/10.1016/j.yexcr.2011.03.010.
45.
Pillay, V., Gan, H.K., Scott, A.M.: Antibodies in oncology. New Biotechnology. 28, 518–529 (2011). https://doi.org/10.1016/j.nbt.2011.03.021.
46.
Schrama, D., Reisfeld, R.A., Becker, J.C.: Antibody targeted drugs as cancer therapeutics. Nature Reviews Drug Discovery. 5, 147–159 (2006). https://doi.org/10.1038/nrd1957.
47.
Weiner, L.M., Surana, R., Wang, S.: Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews Immunology. 10, 317–327 (2010). https://doi.org/10.1038/nri2744.
48.
Ducry, L., Stump, B.: Antibody−drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjugate chemistry. 21, 5–13 (2010). https://doi.org/10.1021/bc9002019.
49.
Alley, S.C., Okeley, N.M., Senter, P.D.: Antibody–drug conjugates: targeted drug delivery for cancer. Current Opinion in Chemical Biology. 14, 529–537 (2010). https://doi.org/10.1016/j.cbpa.2010.06.170.
50.
Webb, S.: Pharma interest surges in antibody drug conjugates. Nature Biotechnology. 29, 297–298 (2011). https://doi.org/10.1038/nbt0411-297.
51.
Holliger, P., Hudson, P.J.: Engineered antibody fragments and the rise of single domains. Nature Biotechnology. 23, 1126–1136 (2005). https://doi.org/10.1038/nbt1142.
52.
Jinek, M., Doudna, J.A.: A three-dimensional view of the molecular machinery of RNA interference. Nature. 457, 405–412 (2009). https://doi.org/10.1038/nature07755.
53.
Castanotto, D., Rossi, J.J.: The promises and pitfalls of RNA-interference-based therapeutics. Nature. 457, 426–433 (2009). https://doi.org/10.1038/nature07758.
54.
Grimm, D.: Small silencing RNAs: State-of-the-art. Advanced Drug Delivery Reviews. 61, 672–703 (2009). https://doi.org/10.1016/j.addr.2009.05.002.
55.
Vaishnaw, A.K., Gollob, J., Gamba-Vitalo, C., Hutabarat, R., Sah, D., Meyers, R., de Fougerolles, T., Maraganore, J.: A status report on RNAi therapeutics. Silence. 1, (2010). https://doi.org/10.1186/1758-907X-1-14.
56.
Shen, J., Samul, R., Silva, R.L., Akiyama, H., Liu, H., Saishin, Y., Hackett, S.F., Zinnen, S., Kossen, K., Fosnaugh, K., Vargeese, C., Gomez, A., Bouhana, K., Aitchison, R., Pavco, P., Campochiaro, P.A.: Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Therapy. 13, 225–234 (2005). https://doi.org/10.1038/sj.gt.3302641.
57.
Kalluri, R., Kanasaki, K.: RNA interference: Generic block on angiogenesis. Nature. 452, 543–545 (2008). https://doi.org/10.1038/452543a.
58.
Human embryonic stem cells: Derivation, culture, and differentiation: A review.
59.
Stadtfeld, M., Hochedlinger, K.: Induced pluripotency: history, mechanisms, and applications. Genes & Development. 24, 2239–2263 (2010). https://doi.org/10.1101/gad.1963910.
60.
Watt, F.M., Driskell, R.R.: The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences. 365, 155–163 (2010). https://doi.org/10.1098/rstb.2009.0149.
61.
Brignier, A.C., Gewirtz, A.M.: Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology. 125, S336–S344 (2010). https://doi.org/10.1016/j.jaci.2009.09.032.
62.
Lledo, P.-M., Merkle, F.T., Alvarez-Buylla, A.: Origin and function of olfactory bulb interneuron diversity. Trends in Neurosciences. 31, 392–400 (2008). https://doi.org/10.1016/j.tins.2008.05.006.
63.
Murray, C.W.: Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency. Journal of Medicinal Chemistry. 53, 5942–5955 (2010). https://doi.org/10.1021/jm100059d.
64.
Hopkins, A.L., Groom, C.R., Alex, A.: Ligand efficiency: a useful metric for lead selection. Drug Discovery Today. 9, 430–431 (2004). https://doi.org/10.1016/S1359-6446(04)03069-7.
65.
Congreve, M., Chessari, G., Tisi, D., Woodhead, A.J.: Recent Developments in Fragment-Based Drug Discovery. Journal of Medicinal Chemistry. 51, 3661–3680 (2008). https://doi.org/10.1021/jm8000373.
66.
Murray, C.W., Rees, D.C.: The rise of fragment-based drug discovery. Nature Chemistry. 1, 187–192 (2009). https://doi.org/10.1038/nchem.217.
67.
Baurin, N., Aboul-Ela, F., Barril, X., Davis, B., Drysdale, M., Dymock, B., Finch, H., Fromont, C., Richardson, C., Simmonite, H., Hubbard, R.E.: Design and Characterization of Libraries of Molecular Fragments for Use in NMR Screening against Protein Targets. Journal of Chemical Information and Modeling. 44, 2157–2166 (2004). https://doi.org/10.1021/ci049806z.
68.
Woodhead, A.J.: Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design. Journal of Medicinal Chemistry. 53, 5956–5969 (2010). https://doi.org/10.1021/jm100060b.
69.
DiMasi, J.A., Hansen, R.W., Grabowski, H.G.: The price of innovation: new estimates of drug development costs. Journal of Health Economics. 22, 151–185 (2003). https://doi.org/10.1016/S0167-6296(02)00126-1.