[1]
S. Wilhelm, ‘Discovery and development of sorafenib: a multikinase inhibitor for treating cancer’, Nature Reviews Drug Discovery, vol. 5, no. 10, pp. 835–844, Oct. 2006, doi: 10.1038/nrd2130.
[2]
R. A. Smith, ‘Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach’, Bioorganic & Medicinal Chemistry Letters, vol. 11, no. 20, pp. 2775–2778, Oct. 2001, doi: 10.1016/S0960-894X(01)00571-6.
[3]
I. Kola and J. Landis, ‘Opinion: Can the pharmaceutical industry reduce attrition rates?’, Nature Reviews Drug Discovery, vol. 3, no. 8, pp. 711–716, Aug. 2004, doi: 10.1038/nrd1470.
[4]
D. C. Swinney and J. Anthony, ‘How were new medicines discovered?’, Nature Reviews Drug Discovery, vol. 10, no. 7, pp. 507–519, Jun. 2011, doi: 10.1038/nrd3480.
[5]
R. Macarron et al., ‘Impact of high-throughput screening in biomedical research’, Nature Reviews Drug Discovery, vol. 10, no. 3, pp. 188–195, Mar. 2011, doi: 10.1038/nrd3368.
[6]
Selzer, P. M., Rohwer, A., and Marhöfer, R. J., Applied bioinformatics: an introduction. Berlin: Springer, 2008.
[7]
Xiong, Jin, Essential bioinformatics. New York: Cambridge University Press, 2006.
[8]
Orengo, Christine Ann, Thornton, Janet M., and Jones, David Tudor, Bioinformatics: genes, proteins and computers. Oxford: BIOS, 2003 [Online]. Available: http://www.vlebooks.com/vleweb/product/openreader?id=UCL&isbn=9780203427828
[9]
Zvelebil, Marketa J. and Baum, Jeremy O., Understanding bioinformatics. London: Garland Science, 2008 [Online]. Available: https://bibliu.com/app/#/view/books/9781136976964/pdf2htmlex/index.html#page_Cover
[10]
Gu, Jenny and Bourne, Philip E., Structural bioinformatics, 2nd ed., vol. Methods of biochemical analysis. Hoboken, N.J.: Wiley, 2008.
[11]
Petsko, Gregory A. and Ringe, Dagmar, Protein structure and function, vol. Primers in biology. London: New Science, 2004.
[12]
Nelson, David L., Cox, Michael M., and Lehninger, Albert L., Lehninger principles of biochemistry, 5th ed. Basingstoke: W.H. Freeman, 2008.
[13]
N. Chandra, ‘Computational systems approach for drug target discovery’, Expert Opinion on Drug Discovery, vol. 4, no. 12, pp. 1221–1236, Dec. 2009, doi: 10.1517/17460440903380422.
[14]
J. P. Overington, B. Al-Lazikani, and A. L. Hopkins, ‘How many drug targets are there?’, Nature Reviews Drug Discovery, vol. 5, no. 12, pp. 993–996, Dec. 2006, doi: 10.1038/nrd2199.
[15]
R. Fitt and E. Nodder, ‘Setting the threshold for industrial application: the UK diverges from Europe’, Journal of Intellectual Property Law & Practice, vol. 5, no. 8, pp. 560–565, Jun. 2010, doi: 10.1093/jiplp/jpq061.
[16]
M. Ikura and M. Inouye, ‘NMR structure of the histidine kinase domain of the : E. coli: osmosensor EnvZ : Article : Nature’, Nature, vol. 396, no. 6706, pp. 88–92, Nov. 1998, doi: 10.1038/23968.
[17]
K. A. Krohn and J. M. Link, ‘Interpreting enzyme and receptor kinetics: keeping it simple, but not too simple’, Nuclear Medicine and Biology, vol. 30, no. 8, pp. 819–826, Nov. 2003, doi: 10.1016/S0969-8051(03)00132-X.
[18]
K. Jarnagin, ‘Receptor Binding in Drug Discovery’, in eLS, .
[19]
K. Jarnagin, Receptor Binding in Drug Discovery. Chichester: John Wiley & Sons, Ltd, 2001.
[20]
Cornish-Bowden, Athel, Fundamentals of enzyme kinetics, 3rd ed. London: Portland, 2004.
[21]
Copeland, Robert Allen, Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists, vol. Methods of biochemical analysis. Hoboken, N.J.: J. Wiley, 2005 [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118540398
[22]
Gibb, Alasdair J., Foreman, John C., and Johansen, Torben, Textbook of receptor pharmacology, 3rd ed. Boca Raton, FL: CRC Press, 2011.
[23]
Rang, H. P. and Dale, M. Maureen, Pharmacology, 9th ed. Edinburgh: Churchill Livingstone, 2019 [Online]. Available: https://elsevierelibrary.co.uk/product/9780702074462
[24]
D. Colquhoun, ‘Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors’, British Journal of Pharmacology, vol. 125, no. 5, pp. 923–947, Nov. 1998, doi: 10.1038/sj.bjp.0702164.
[25]
X. Khawaja, J. Dunlop, and D. Kowal, ‘Scintillation proximity assay in lead discovery’, Expert Opinion on Drug Discovery, vol. 3, no. 11, pp. 1267–1280, Nov. 2008, doi: 10.1517/17460441.3.11.1267.
[26]
T. P. Kenakin, ‘Cellular assays as portals to seven-transmembrane receptor-based drug discovery’, Nature Reviews Drug Discovery, vol. 8, no. 8, pp. 617–626, Jul. 2009, doi: 10.1038/nrd2838.
[27]
J. Dunlop, ‘High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology’, Nature Reviews Drug Discovery, vol. 7, no. 4, pp. 358–368, Apr. 2008, doi: 10.1038/nrd2552.
[28]
A. L. Hopkins and C. R. Groom, ‘Opinion: The druggable genome’, Nature Reviews Drug Discovery, vol. 1, no. 9, pp. 727–730, Sep. 2002, doi: 10.1038/nrd892.
[29]
Richard M. Durbin, ‘A map of human genome variation from population-scale sequencing’, Nature, vol. 467, no. 7319, pp. 1061–1073, Oct. 2010, doi: 10.1038/nature09534.
[30]
Thomas, Gareth, Fundamentals of medicinal chemistry. 2003.
[31]
Patrick, Graham L., An introduction to medicinal chemistry. 2017.
[32]
Leach, Andrew R. and Gillet, Valerie J., An introduction to chemoinformatics. 2003.
[33]
Engel, Thomas and Gasteiger, J., Chemoinformatics: a textbook. 2003.
[34]
Gasteiger, J., Handbook of chemoinformatics: from data to knowledge. 2003 [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618279
[35]
C. Bissantz, B. Kuhn, and M. Stahl, ‘A Medicinal Chemist’s Guide to Molecular Interactions’, Journal of Medicinal Chemistry, vol. 53, no. 14, pp. 5061–5084, Jul. 2010, doi: 10.1021/jm100112j. [Online]. Available: https://contentstore.cla.co.uk/secure/link?id=fb92e363-cb0b-f011-90cc-c5989c4ef87d
[36]
H. Matter, ‘Selecting Optimally Diverse Compounds from Structure Databases: A Validation Study of Two-Dimensional and Three-Dimensional Molecular Descriptors’, Journal of Medicinal Chemistry, vol. 40, no. 8, pp. 1219–1229, Apr. 1997, doi: 10.1021/jm960352+. [Online]. Available: https://contentstore.cla.co.uk/secure/link?id=c491b572-220b-f011-90cc-c5989c4ef87d
[37]
P. Willett, J. M. Barnard, and G. M. Downs, ‘Chemical Similarity Searching’, Journal of Chemical Information and Modeling, vol. 38, no. 6, pp. 983–996, Nov. 1998, doi: 10.1021/ci9800211. [Online]. Available: https://contentstore.cla.co.uk/secure/link?id=e44202ff-cd0b-f011-90cc-c5989c4ef87d
[38]
M. E. Welsch, S. A. Snyder, and B. R. Stockwell, ‘Privileged scaffolds for library design and drug discovery’, Current Opinion in Chemical Biology, vol. 14, no. 3, pp. 347–361, Jun. 2010, doi: 10.1016/j.cbpa.2010.02.018.
[39]
C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, ‘Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings’, Advanced Drug Delivery Reviews, vol. 23, no. 1–3, pp. 3–25, Jan. 1997, doi: 10.1016/S0169-409X(96)00423-1.
[40]
D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple, ‘Molecular Properties That Influence the Oral Bioavailability of Drug Candidates’, Journal of Medicinal Chemistry, vol. 45, no. 12, pp. 2615–2623, Jun. 2002, doi: 10.1021/jm020017n. [Online]. Available: https://contentstore.cla.co.uk/secure/link?id=de13eed7-c90b-f011-90cc-c5989c4ef87d
[41]
J. F. Blake, ‘Identification and Evaluation of Molecular Properties Related to Preclinical Optimization and Clinical Fate’, Medicinal Chemistry, vol. 1, no. 6, pp. 649–655, Nov. 2005, doi: 10.2174/157340605774598081.
[42]
A. Beck, T. Wurch, C. Bailly, and N. Corvaia, ‘Strategies and challenges for the next generation of therapeutic antibodies’, Nature Reviews Immunology, vol. 10, no. 5, pp. 345–352, May 2010, doi: 10.1038/nri2747.
[43]
A. R. M. Bradbury, S. Sidhu, S. Dübel, and J. McCafferty, ‘Beyond natural antibodies: the power of in vitro display technologies’, Nature Biotechnology, vol. 29, no. 3, pp. 245–254, Mar. 2011, doi: 10.1038/nbt.1791.
[44]
D. Nagorsen and P. A. Baeuerle, ‘Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab’, Experimental Cell Research, vol. 317, no. 9, pp. 1255–1260, May 2011, doi: 10.1016/j.yexcr.2011.03.010.
[45]
V. Pillay, H. K. Gan, and A. M. Scott, ‘Antibodies in oncology’, New Biotechnology, vol. 28, no. 5, pp. 518–529, Sep. 2011, doi: 10.1016/j.nbt.2011.03.021.
[46]
D. Schrama, R. A. Reisfeld, and J. C. Becker, ‘Antibody targeted drugs as cancer therapeutics’, Nature Reviews Drug Discovery, vol. 5, no. 2, pp. 147–159, Jan. 2006, doi: 10.1038/nrd1957.
[47]
L. M. Weiner, R. Surana, and S. Wang, ‘Monoclonal antibodies: versatile platforms for cancer immunotherapy’, Nature Reviews Immunology, vol. 10, no. 5, pp. 317–327, May 2010, doi: 10.1038/nri2744.
[48]
L. Ducry and B. Stump, ‘Antibody−drug conjugates: Linking cytotoxic payloads to monoclonal antibodies’, Bioconjugate chemistry, vol. 21, no. 1, pp. 5–13, Jan. 2010, doi: 10.1021/bc9002019.
[49]
S. C. Alley, N. M. Okeley, and P. D. Senter, ‘Antibody–drug conjugates: targeted drug delivery for cancer’, Current Opinion in Chemical Biology, vol. 14, no. 4, pp. 529–537, Aug. 2010, doi: 10.1016/j.cbpa.2010.06.170.
[50]
S. Webb, ‘Pharma interest surges in antibody drug conjugates’, Nature Biotechnology, vol. 29, no. 4, pp. 297–298, Apr. 2011, doi: 10.1038/nbt0411-297.
[51]
P. Holliger and P. J. Hudson, ‘Engineered antibody fragments and the rise of single domains’, Nature Biotechnology, vol. 23, no. 9, pp. 1126–1136, Sep. 2005, doi: 10.1038/nbt1142.
[52]
M. Jinek and J. A. Doudna, ‘A three-dimensional view of the molecular machinery of RNA interference’, Nature, vol. 457, no. 7228, pp. 405–412, Jan. 2009, doi: 10.1038/nature07755.
[53]
D. Castanotto and J. J. Rossi, ‘The promises and pitfalls of RNA-interference-based therapeutics’, Nature, vol. 457, no. 7228, pp. 426–433, Jan. 2009, doi: 10.1038/nature07758.
[54]
D. Grimm, ‘Small silencing RNAs: State-of-the-art’, Advanced Drug Delivery Reviews, vol. 61, no. 9, pp. 672–703, Jul. 2009, doi: 10.1016/j.addr.2009.05.002.
[55]
A. K. Vaishnaw et al., ‘A status report on RNAi therapeutics’, Silence, vol. 1, no. 1, 2010, doi: 10.1186/1758-907X-1-14.
[56]
J. Shen et al., ‘Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1’, Gene Therapy, vol. 13, no. 3, pp. 225–234, Sep. 2005, doi: 10.1038/sj.gt.3302641.
[57]
R. Kalluri and K. Kanasaki, ‘RNA interference: Generic block on angiogenesis’, Nature, vol. 452, no. 7187, pp. 543–545, Apr. 2008, doi: 10.1038/452543a.
[58]
‘Human embryonic stem cells: Derivation, culture, and differentiation: A review’. .
[59]
M. Stadtfeld and K. Hochedlinger, ‘Induced pluripotency: history, mechanisms, and applications’, Genes & Development, vol. 24, no. 20, pp. 2239–2263, Oct. 2010, doi: 10.1101/gad.1963910.
[60]
F. M. Watt and R. R. Driskell, ‘The therapeutic potential of stem cells’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365, no. 1537, pp. 155–163, Jan. 2010, doi: 10.1098/rstb.2009.0149.
[61]
A. C. Brignier and A. M. Gewirtz, ‘Embryonic and adult stem cell therapy’, Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S336–S344, Feb. 2010, doi: 10.1016/j.jaci.2009.09.032.
[62]
P.-M. Lledo, F. T. Merkle, and A. Alvarez-Buylla, ‘Origin and function of olfactory bulb interneuron diversity’, Trends in Neurosciences, vol. 31, no. 8, pp. 392–400, Aug. 2008, doi: 10.1016/j.tins.2008.05.006.
[63]
C. W. Murray, ‘Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency’, Journal of Medicinal Chemistry, vol. 53, no. 16, pp. 5942–5955, Aug. 2010, doi: 10.1021/jm100059d.
[64]
A. L. Hopkins, C. R. Groom, and A. Alex, ‘Ligand efficiency: a useful metric for lead selection’, Drug Discovery Today, vol. 9, no. 10, pp. 430–431, May 2004, doi: 10.1016/S1359-6446(04)03069-7.
[65]
M. Congreve, G. Chessari, D. Tisi, and A. J. Woodhead, ‘Recent Developments in Fragment-Based Drug Discovery’, Journal of Medicinal Chemistry, vol. 51, no. 13, pp. 3661–3680, Jul. 2008, doi: 10.1021/jm8000373. [Online]. Available: https://contentstore.cla.co.uk/secure/link?id=0bbaf30c-e20b-f011-90cc-c5989c4ef87d
[66]
C. W. Murray and D. C. Rees, ‘The rise of fragment-based drug discovery’, Nature Chemistry, vol. 1, no. 3, pp. 187–192, Jun. 2009, doi: 10.1038/nchem.217.
[67]
N. Baurin et al., ‘Design and Characterization of Libraries of Molecular Fragments for Use in NMR Screening against Protein Targets’, Journal of Chemical Information and Modeling, vol. 44, no. 6, pp. 2157–2166, Nov. 2004, doi: 10.1021/ci049806z. [Online]. Available: https://contentstore.cla.co.uk/secure/link?id=e3feb169-e40b-f011-90cc-c5989c4ef87d
[68]
A. J. Woodhead, ‘Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design’, Journal of Medicinal Chemistry, vol. 53, no. 16, pp. 5956–5969, Aug. 2010, doi: 10.1021/jm100060b. [Online]. Available: https://contentstore.cla.co.uk/secure/link?id=2cf7cd66-e30b-f011-90cc-c5989c4ef87d
[69]
J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, ‘The price of innovation: new estimates of drug development costs’, Journal of Health Economics, vol. 22, no. 2, pp. 151–185, Mar. 2003, doi: 10.1016/S0167-6296(02)00126-1.