[1]
Azarova, A.M. et al. 2011. Emerging importance of ALK in neuroblastoma. Seminars in Cancer Biology. 21, 4 (Oct. 2011), 267–275. DOI:https://doi.org/10.1016/j.semcancer.2011.09.005.
[2]
Beierle, E.A. MYCN, Neuroblastoma and Focal Adhesion Kinase (FAK). Frontiers in bioscience (Elite edition). 3.
[3]
Bell, E. et al. 2010. MYCN oncoprotein targets and their therapeutic potential. Cancer Letters. 293, 2 (Jul. 2010), 144–157. DOI:https://doi.org/10.1016/j.canlet.2010.01.015.
[4]
Bender, S. et al. 2013. Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell. 24, 5 (Nov. 2013), 660–672. DOI:https://doi.org/10.1016/j.ccr.2013.10.006.
[5]
Berry, T. et al. 2012. The ALKF1174L Mutation Potentiates the Oncogenic Activity of MYCN in Neuroblastoma. Cancer Cell. 22, 1 (Jul. 2012), 117–130. DOI:https://doi.org/10.1016/j.ccr.2012.06.001.
[6]
Bleggi-Torres, L.F. et al. 2001. Accuracy of the smear technique in the cytological diagnosis of 650 lesions of the central nervous system. Diagnostic Cytopathology. 24, 4 (Apr. 2001), 293–295. DOI:https://doi.org/10.1002/dc.1062.
[7]
Blümcke, I. et al. 2016. Low-grade epilepsy-associated neuroepithelial tumours — the 2016 WHO classification. Nature Reviews Neurology. 12, 12 (Dec. 2016), 732–740. DOI:https://doi.org/10.1038/nrneurol.2016.173.
[8]
Brodeur, G.M. 2003. Neuroblastoma: biological insights into a clinical enigma. Nature Reviews Cancer. 3, 3 (Mar. 2003), 203–216. DOI:https://doi.org/10.1038/nrc1014.
[9]
Brodeur, G.M. and Bagatell, R. 2014. Mechanisms of neuroblastoma regression. Nature Reviews Clinical Oncology. 11, 12 (Dec. 2014), 704–713. DOI:https://doi.org/10.1038/nrclinonc.2014.168.
[10]
Brown, C.E. et al. 2016. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine. 375, 26 (Dec. 2016), 2561–2569. DOI:https://doi.org/10.1056/NEJMoa1610497.
[11]
Buckner, T. et al. 2006. The Autopsy in Pediatrics and Pediatric Oncology: A Single-Institution Experience. Pediatric and Developmental Pathology. 9, 5 (Sep. 2006), 374–380. DOI:https://doi.org/10.2350/06-02-0047.1.
[12]
Burkhart, C.A. et al. 2003. Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma. JNCI Journal of the National Cancer Institute. 95, 18 (Sep. 2003), 1394–1403. DOI:https://doi.org/10.1093/jnci/djg045.
[13]
Chen, L. et al. 2010. p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma. Cancer Research. 70, 4 (Feb. 2010), 1377–1388. DOI:https://doi.org/10.1158/0008-5472.CAN-09-2598.
[14]
Chhabda, S. et al. 2016. The 2016 World Health Organization Classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know. Quantitative Imaging in Medicine and Surgery. 6, 5 (Oct. 2016), 486–489. DOI:https://doi.org/10.21037/qims.2016.10.01.
[15]
Children’s cancer statistics | Cancer Research UK: http://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers.
[16]
Cossu, I. et al. 2015. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials. 68, (Nov. 2015), 89–99. DOI:https://doi.org/10.1016/j.biomaterials.2015.07.054.
[17]
Ellison, D.W. et al. 2005. β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. Journal of Clinical Oncology. 23, 31 (Nov. 2005), 7951–7957. DOI:https://doi.org/10.1200/JCO.2005.01.5479.
[18]
Evans, A.E. et al. 1981. Do infants with stage IV-S neuroblastoma need treatment? Archives of Disease in Childhood. 56, 4 (Apr. 1981), 271–274. DOI:https://doi.org/10.1136/adc.56.4.271.
[19]
Fisher, J. et al. 2017. Avoidance of On-Target Off-Tumor Activation Using a Co-stimulation-Only Chimeric Antigen Receptor. Molecular Therapy. 25, 5 (May 2017), 1234–1247. DOI:https://doi.org/10.1016/j.ymthe.2017.03.002.
[20]
Garrett M. Brodeur, Robert C. Seeger, Manfred Schwab, Harold E. Varmus and J. Michael Bishop 1984. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science. 224, 4653 (1984), 1121–1124.
[21]
Ghorashian, S. et al. 2018. Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Experimental Hematology. 66, (Oct. 2018), 5–16. DOI:https://doi.org/10.1016/j.exphem.2018.07.002.
[22]
Gibson, P. et al. 2010. Subtypes of medulloblastoma have distinct developmental origins. Nature. 468, 7327 (Dec. 2010), 1095–1099. DOI:https://doi.org/10.1038/nature09587.
[23]
Goschzik, T. et al. 2017. Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma. Journal of Neuropathology & Experimental Neurology. (Jan. 2017). DOI:https://doi.org/10.1093/jnen/nlw116.
[24]
Greaves, M.F. and Wiemels, J. 2003. Origins of chromosome translocations in childhood leukaemia. Nature Reviews Cancer. 3, 9 (Sep. 2003), 639–649. DOI:https://doi.org/10.1038/nrc1164.
[25]
Guglielmi, L. et al. 2014. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death & Disease. 5, 2 (Feb. 2014), e1081–e1081. DOI:https://doi.org/10.1038/cddis.2014.42.
[26]
Gump, J.M. et al. 2015. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathologica Communications. 3, 1 (Dec. 2015). DOI:https://doi.org/10.1186/s40478-015-0211-5.
[27]
Hanahan, D. and Weinberg, R.A. 2011. Hallmarks of Cancer: The Next Generation. Cell. 144, 5 (Mar. 2011), 646–674. DOI:https://doi.org/10.1016/j.cell.2011.02.013.
[28]
Hanahan, D. and Weinberg, R.A. 2000. The Hallmarks of Cancer. Cell. 100, 1 (Jan. 2000), 57–70. DOI:https://doi.org/10.1016/S0092-8674(00)81683-9.
[29]
Hashizume, R. et al. 2014. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nature Medicine. 20, 12 (Dec. 2014), 1394–1396. DOI:https://doi.org/10.1038/nm.3716.
[30]
Hasle, H. and Niemeyer, C.M. 2011. Advances in the prognostication and management of advanced MDS in children. British Journal of Haematology. 154, 2 (Jul. 2011), 185–195. DOI:https://doi.org/10.1111/j.1365-2141.2011.08724.x.
[31]
Hill, R.M. et al. 2015. Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. Cancer Cell. 27, 1 (Jan. 2015), 72–84. DOI:https://doi.org/10.1016/j.ccell.2014.11.002.
[32]
Hourigan, C.S. and Karp, J.E. 2013. Minimal residual disease in acute myeloid leukaemia. Nature Reviews Clinical Oncology. 10, 8 (Aug. 2013), 460–471. DOI:https://doi.org/10.1038/nrclinonc.2013.100.
[33]
Huang, M. and Weiss, W.A. 2013. Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine. 3, 10 (Oct. 2013), a014415–a014415. DOI:https://doi.org/10.1101/cshperspect.a014415.
[34]
Huber, K. et al. 2009. The development of the chromaffin cell lineage from the neural crest. Autonomic Neuroscience. 151, 1 (Nov. 2009), 10–16. DOI:https://doi.org/10.1016/j.autneu.2009.07.020.
[35]
Hubert, C.G. et al. 2016. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found. Cancer Research. 76, 8 (Apr. 2016), 2465–2477. DOI:https://doi.org/10.1158/0008-5472.CAN-15-2402.
[36]
Hunger, S.P. and Mullighan, C.G. 2015. Acute Lymphoblastic Leukemia in Children. New England Journal of Medicine. 373, 16 (Oct. 2015), 1541–1552. DOI:https://doi.org/10.1056/NEJMra1400972.
[37]
International Agency for Research on Cancer 2016. WHO classification of tumours of the central nervous system. International Agency for Research on Cancer.
[38]
Johnson, L.A. and June, C.H. 2017. Driving gene-engineered T cell immunotherapy of cancer. Cell Research. 27, 1 (Jan. 2017), 38–58. DOI:https://doi.org/10.1038/cr.2016.154.
[39]
Kirsti Sirkiä, Ulla M. Saarinen‐Pihkala, Liisa Hovi, Hannu Sariola 1998. Autopsy in children with cancer who die while in terminal care. Medical and Pediatric Oncology. 30, 5 (1998), 284–289. DOI:https://doi.org/10.1002/(SICI)1096-911X(199805)30:5<284::AID-MPO4>3.0.CO;2-B.
[40]
Klebanoff, C.A. et al. 2016. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine. 22, 1 (Jan. 2016), 26–36. DOI:https://doi.org/10.1038/nm.4015.
[41]
Koebel, C.M. et al. 2007. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 450, 7171 (Dec. 2007), 903–907. DOI:https://doi.org/10.1038/nature06309.
[42]
Korshunov, AndreySturm, DominikRyzhova, MarinaHovestadt, VolkerGessi, Marco Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica. 128, 8, 279–89.
[43]
Kotrova, M. et al. 2017. Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia? Molecular Diagnosis & Therapy. 21, 5 (Oct. 2017), 481–492. DOI:https://doi.org/10.1007/s40291-017-0277-9.
[44]
Larson, J.D. et al. 2018. Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell. (Dec. 2018). DOI:https://doi.org/10.1016/j.ccell.2018.11.015.
[45]
Lee, T.I. and Young, R.A. 2013. Transcriptional Regulation and Its Misregulation in Disease. Cell. 152, 6 (Mar. 2013), 1237–1251. DOI:https://doi.org/10.1016/j.cell.2013.02.014.
[46]
Lewis, P.W. et al. 2013. Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma. Science. 340, 6134 (May 2013), 857–861. DOI:https://doi.org/10.1126/science.1232245.
[47]
Liu, Z. and Thiele, C.J. 2012. ALK and MYCN: When Two Oncogenes Are Better than One. Cancer Cell. 21, 3 (Mar. 2012), 325–326. DOI:https://doi.org/10.1016/j.ccr.2012.03.004.
[48]
Lord, C.J. and Ashworth, A. 2010. Biology-driven cancer drug development: back to the future. BMC Biology. 8, 1 (2010). DOI:https://doi.org/10.1186/1741-7007-8-38.
[49]
Lu, B. et al. 2016. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials. Cancers. 8, 9 (Sep. 2016). DOI:https://doi.org/10.3390/cancers8090082.
[50]
Mackall, C.L. et al. 2014. Immune-based therapies for childhood cancer. Nature Reviews Clinical Oncology. 11, 12 (Dec. 2014), 693–703. DOI:https://doi.org/10.1038/nrclinonc.2014.177.
[51]
Majzner, R.G. et al. 2017. Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell. 31, 4 (Apr. 2017), 476–485. DOI:https://doi.org/10.1016/j.ccell.2017.03.002.
[52]
Marabelle, A. et al. 2009. Hypercalcemia and 13-                              -retinoic acid in post-consolidation therapy of neuroblastoma. Pediatric Blood & Cancer. 52, 2 (Feb. 2009), 280–283. DOI:https://doi.org/10.1002/pbc.21768.
[53]
Martinez-Barbera, J.P. and Andoniadou, C.L. 2016. Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma. STEM CELLS. 34, 2 (Feb. 2016), 268–276. DOI:https://doi.org/10.1002/stem.2267.
[54]
Martinez-Barbera, J.P. and Buslei, R. 2015. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. Journal of Pediatric Endocrinology and Metabolism. 28, 1–2 (Jan. 2015). DOI:https://doi.org/10.1515/jpem-2014-0442.
[55]
Matthay, K.K. et al. 1999. Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-                              -Retinoic Acid. New England Journal of Medicine. 341, 16 (Oct. 1999), 1165–1173. DOI:https://doi.org/10.1056/NEJM199910143411601.
[56]
Milne, T.A. 2017. Mouse models of MLL leukemia: recapitulating the human disease. Blood. 129, 16 (Apr. 2017), 2217–2223. DOI:https://doi.org/10.1182/blood-2016-10-691428.
[57]
Morsut, L. et al. 2016. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell. 164, 4 (Feb. 2016), 780–791. DOI:https://doi.org/10.1016/j.cell.2016.01.012.
[58]
Mossé, Y.P. et al. 2008. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 455, 7215 (Oct. 2008), 930–935. DOI:https://doi.org/10.1038/nature07261.
[59]
Nataliya Zhukova 2013. Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma. Journal of Clinical Oncology. 31, 23 (2013). DOI:https://doi.org/10.1200/JCO.2012.48.5052.
[60]
Niemeyer, C.M. and Kratz, C.P. 2008. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. British Journal of Haematology. 140, 6 (Mar. 2008), 610–624. DOI:https://doi.org/10.1111/j.1365-2141.2007.06958.x.
[61]
Niklison-Chirou, M.V. et al. 2017. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes & Development. 31, 17 (Sep. 2017), 1738–1753. DOI:https://doi.org/10.1101/gad.302349.117.
[62]
Northcott, P.A. et al. 2012. The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology. 8, 6 (Jun. 2012), 340–351. DOI:https://doi.org/10.1038/nrneurol.2012.78.
[63]
O’Connor, D. et al. 2018. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology. 36, 1 (Jan. 2018), 34–43. DOI:https://doi.org/10.1200/JCO.2017.74.0449.
[64]
O’Connor, D. et al. 2018. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology. 36, 1 (Jan. 2018), 34–43. DOI:https://doi.org/10.1200/JCO.2017.74.0449.
[65]
Pastorino, F. et al. 2007. Ligand-Targeted Liposomal Therapies of Neuroblastoma. Current Medicinal Chemistry. 14, 29 (Dec. 2007), 3070–3078. DOI:https://doi.org/10.2174/092986707782793916.
[66]
Pathania, M. et al. 2017. H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell. 32, 5 (Nov. 2017), 684-700.e9. DOI:https://doi.org/10.1016/j.ccell.2017.09.014.
[67]
Pfister, S. et al. 2009. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathologica. 117, 4 (Apr. 2009), 457–464. DOI:https://doi.org/10.1007/s00401-008-0467-y.
[68]
Phoenix, T.N. et al. 2016. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell. 29, 4 (Apr. 2016), 508–522. DOI:https://doi.org/10.1016/j.ccell.2016.03.002.
[69]
Qasim, W. et al. 2017. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine. 9, 374 (Jan. 2017). DOI:https://doi.org/10.1126/scitranslmed.aaj2013.
[70]
Qiao, J. et al. 2012. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and Biophysical Research Communications. 424, 3 (Aug. 2012), 421–426. DOI:https://doi.org/10.1016/j.bbrc.2012.06.125.
[71]
Rasaiyaah, J. et al. 2018. TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy. JCI Insight. 3, 13 (Jul. 2018). DOI:https://doi.org/10.1172/jci.insight.99442.
[72]
Reynolds, C.P. et al. 2003. Retinoid therapy of high-risk neuroblastoma. Cancer Letters. 197, 1–2 (Jul. 2003), 185–192. DOI:https://doi.org/10.1016/S0304-3835(03)00108-3.
[73]
Richmond, A. and Su, Y. 2008. Mouse xenograft models vs GEM models for human cancer therapeutics. Disease Models and Mechanisms. 1, 2–3 (Sep. 2008), 78–82. DOI:https://doi.org/10.1242/dmm.000976.
[74]
Sadelain, M. et al. 2017. Therapeutic T cell engineering. Nature. 545, 7655 (May 2017), 423–431. DOI:https://doi.org/10.1038/nature22395.
[75]
Schwab, M. 2004. MYCN in neuronal tumours. Cancer Letters. 204, 2 (Feb. 2004), 179–187. DOI:https://doi.org/10.1016/S0304-3835(03)00454-3.
[76]
Schwalbe, E.C. et al. 2017. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. The Lancet Oncology. 18, 7 (Jul. 2017), 958–971. DOI:https://doi.org/10.1016/S1470-2045(17)30243-7.
[77]
Schwalbe, Ed.C. et al. 2013. Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types. Acta Neuropathologica. 126, 6 (Dec. 2013), 943–946. DOI:https://doi.org/10.1007/s00401-013-1206-6.
[78]
Schwartzentruber, J. et al. 2012. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 482, 7384 (Feb. 2012), 226–231. DOI:https://doi.org/10.1038/nature10833.
[79]
Sidell, N. 1982. Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells In Vitro. JNCI: Journal of the National Cancer Institute. (1982). DOI:https://doi.org/10.1093/jnci/68.4.589.
[80]
Slany, R.K. 2016. The molecular mechanics of mixed lineage leukemia. Oncogene. 35, 40 (Oct. 2016), 5215–5223. DOI:https://doi.org/10.1038/onc.2016.30.
[81]
Stone, T.J. and Jacques, T.S. 2015. Medulloblastoma: selecting children for reduced treatment. Neuropathology and Applied Neurobiology. 41, 2 (Feb. 2015), 106–108. DOI:https://doi.org/10.1111/nan.12193.
[82]
Strebhardt, K. and Ullrich, A. 2008. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Reviews Cancer. 8, 6 (Jun. 2008), 473–480. DOI:https://doi.org/10.1038/nrc2394.
[83]
Sturm, D. et al. 2012. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell. 22, 4 (Oct. 2012), 425–437. DOI:https://doi.org/10.1016/j.ccr.2012.08.024.
[84]
Sturm, D. et al. 2016. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell. 164, 5 (Feb. 2016), 1060–1072. DOI:https://doi.org/10.1016/j.cell.2016.01.015.
[85]
Taylor, Michael DNorthcott, Paul AKorshunov, AndreyRemke, MarcCho, Yoon-jae Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica. 123, 3, 465–72.
[86]
Vogelstein, B. et al. 2013. Cancer Genome Landscapes. Science. 339, 6127 (Mar. 2013), 1546–1558. DOI:https://doi.org/10.1126/science.1235122.
[87]
Vogelstein, B. et al. 2013. Cancer Genome Landscapes. Science. 339, 6127 (Mar. 2013), 1546–1558. DOI:https://doi.org/10.1126/science.1235122.
[88]
Vora, A. et al. 2014. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. The Lancet Oncology. 15, 8 (Jul. 2014), 809–818. DOI:https://doi.org/10.1016/S1470-2045(14)70243-8.
[89]
Vora, A. et al. 2013. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. The Lancet Oncology. 14, 3 (Mar. 2013), 199–209. DOI:https://doi.org/10.1016/S1470-2045(12)70600-9.
[90]
Wegman-Ostrosky, T. and Savage, S.A. 2017. The genomics of inherited bone marrow failure: from mechanism to the clinic. British Journal of Haematology. 177, 4 (May 2017), 526–542. DOI:https://doi.org/10.1111/bjh.14535.
[91]
Weinberg, R.A. 2014. The biology of cancer. Garland Science.
[92]
Wright, J.H. 1910. NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED. The Journal of Experimental Medicine. 12, 4 (1910). DOI:https://doi.org/10.1084/jem.12.4.556.
[93]
Yang, LiqunKe, Xiao-XueXuan, FanTan, JuanHou, Jianbing PHOX2B Is Associated with Neuroblastoma Cell Differentiation. Cancer Biotherapy & Radiopharmaceuticals. 31, 44–51. DOI:https://doi.org/10.1089/cbr.2015.1952.
[94]
Yong, C.S.M. et al. 2017. CAR T-cell therapy of solid tumors. Immunology and Cell Biology. 95, 4 (Apr. 2017), 356–363. DOI:https://doi.org/10.1038/icb.2016.128.
[95]
Zelent, A. et al. 2004. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 23, 24 (May 2004), 4275–4283. DOI:https://doi.org/10.1038/sj.onc.1207672.
[96]
Zhu, S. et al. 2012. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell. 21, 3 (Mar. 2012), 362–373. DOI:https://doi.org/10.1016/j.ccr.2012.02.010.
[97]
2012. Nature Reviews Immunology. 12, 4 (2012).