1.
Weinberg RA. The Biology of Cancer. 2nd ed. Garland Science; 2014.
2.
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57-70. doi:10.1016/S0092-8674(00)81683-9
3.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
4.
Lord CJ, Ashworth A. Biology-driven cancer drug development: back to the future. BMC Biology. 2010;8(1). doi:10.1186/1741-7007-8-38
5.
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science. 2013;339(6127):1546-1558. doi:10.1126/science.1235122
6.
Lee TI, Young RA. Transcriptional Regulation and Its Misregulation in Disease. Cell. 2013;152(6):1237-1251. doi:10.1016/j.cell.2013.02.014
7.
Children’s cancer statistics | Cancer Research UK. http://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers
8.
International Agency for Research on Cancer. WHO Classification of Tumours of the Central Nervous System. Revised 4th edition. (Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, eds.). International Agency for Research on Cancer; 2016.
9.
Taylor, Michael DNorthcott, Paul AKorshunov, AndreyRemke, MarcCho, Yoon-jae. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica. 123(3):465-472. https://search.proquest.com/docview/928783888?rfr_id=info%3Axri%2Fsid%3Aprimo
10.
Gibson P, Tong Y, Robinson G, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468(7327):1095-1099. doi:10.1038/nature09587
11.
Ellison DW, Onilude OE, Lindsey JC, et al. β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. Journal of Clinical Oncology. 2005;23(31):7951-7957. doi:10.1200/JCO.2005.01.5479
12.
Nataliya Zhukova. Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma. Journal of Clinical Oncology. 2013;31(23). doi:10.1200/JCO.2012.48.5052
13.
Stone TJ, Jacques TS. Medulloblastoma: selecting children for reduced treatment. Neuropathology and Applied Neurobiology. 2015;41(2):106-108. doi:10.1111/nan.12193
14.
Schwalbe EC, Lindsey JC, Nakjang S, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. The Lancet Oncology. 2017;18(7):958-971. doi:10.1016/S1470-2045(17)30243-7
15.
Pfister S, Remke M, Castoldi M, et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathologica. 2009;117(4):457-464. doi:10.1007/s00401-008-0467-y
16.
Korshunov, AndreySturm, DominikRyzhova, MarinaHovestadt, VolkerGessi, Marco. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica. 128(8):279-289. https://search.proquest.com/docview/1545765655?OpenUrlRefId=info:xri/sid:primo&accountid=14511
17.
Schwalbe EdC, Hayden JT, Rogers HA, et al. Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types. Acta Neuropathologica. 2013;126(6):943-946. doi:10.1007/s00401-013-1206-6
18.
Sturm D, Orr BA, Toprak UH, et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell. 2016;164(5):1060-1072. doi:10.1016/j.cell.2016.01.015
19.
Kirsti Sirkiä, Ulla M. Saarinen‐Pihkala, Liisa Hovi, Hannu Sariola. Autopsy in children with cancer who die while in terminal care. Medical and Pediatric Oncology. 1998;30(5):284-289. doi:10.1002/(SICI)1096-911X(199805)30:5<284::AID-MPO4>3.0.CO;2-B
20.
Buckner T, Blatt J, Smith SV. The Autopsy in Pediatrics and Pediatric Oncology: A Single-Institution Experience. Pediatric and Developmental Pathology. 2006;9(5):374-380. doi:10.2350/06-02-0047.1
21.
Bleggi-Torres LF, de Noronha L, Schneider Gugelmin E, et al. Accuracy of the smear technique in the cytological diagnosis of 650 lesions of the central nervous system. Diagnostic Cytopathology. 2001;24(4):293-295. doi:10.1002/dc.1062
22.
Hill RM, Kuijper S, Lindsey JC, et al. Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. Cancer Cell. 2015;27(1):72-84. doi:10.1016/j.ccell.2014.11.002
23.
Blümcke I, Aronica E, Becker A, et al. Low-grade epilepsy-associated neuroepithelial tumours — the 2016 WHO classification. Nature Reviews Neurology. 2016;12(12):732-740. doi:10.1038/nrneurol.2016.173
24.
Chhabda S, Carney O, D’Arco F, Jacques TS, Mankad K. The 2016 World Health Organization Classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know. Quantitative Imaging in Medicine and Surgery. 2016;6(5):486-489. doi:10.21037/qims.2016.10.01
25.
Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226-231. doi:10.1038/nature10833
26.
Sturm D, Witt H, Hovestadt V, et al. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell. 2012;22(4):425-437. doi:10.1016/j.ccr.2012.08.024
27.
Lewis PW, Muller MM, Koletsky MS, et al. Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma. Science. 2013;340(6134):857-861. doi:10.1126/science.1232245
28.
Bender S, Tang Y, Lindroth AM, et al. Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell. 2013;24(5):660-672. doi:10.1016/j.ccr.2013.10.006
29.
Hashizume R, Andor N, Ihara Y, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nature Medicine. 2014;20(12):1394-1396. doi:10.1038/nm.3716
30.
Pathania M, De Jay N, Maestro N, et al. H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell. 2017;32(5):684-700.e9. doi:10.1016/j.ccell.2017.09.014
31.
Larson JD, Kasper LH, Paugh BS, et al. Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell. Published online December 2018. doi:10.1016/j.ccell.2018.11.015
32.
Martinez-Barbera JP, Andoniadou CL. Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma. STEM CELLS. 2016;34(2):268-276. doi:10.1002/stem.2267
33.
Gump JM, Donson AM, Birks DK, et al. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathologica Communications. 2015;3(1). doi:10.1186/s40478-015-0211-5
34.
Martinez-Barbera JP, Buslei R. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. Journal of Pediatric Endocrinology and Metabolism. 2015;28(1-2). doi:10.1515/jpem-2014-0442
35.
Goschzik T, Gessi M, Dreschmann V, et al. Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma. Journal of Neuropathology & Experimental Neurology. Published online 9 January 2017. doi:10.1093/jnen/nlw116
36.
Azarova AM, Gautam G, George RE. Emerging importance of ALK in neuroblastoma. Seminars in Cancer Biology. 2011;21(4):267-275. doi:10.1016/j.semcancer.2011.09.005
37.
Beierle EA. MYCN, Neuroblastoma and Focal Adhesion Kinase (FAK). Frontiers in bioscience (Elite edition). 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171213/
38.
Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA. MYCN oncoprotein targets and their therapeutic potential. Cancer Letters. 2010;293(2):144-157. doi:10.1016/j.canlet.2010.01.015
39.
Berry T, Luther W, Bhatnagar N, et al. The ALKF1174L Mutation Potentiates the Oncogenic Activity of MYCN in Neuroblastoma. Cancer Cell. 2012;22(1):117-130. doi:10.1016/j.ccr.2012.06.001
40.
Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nature Reviews Cancer. 2003;3(3):203-216. doi:10.1038/nrc1014
41.
Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nature Reviews Clinical Oncology. 2014;11(12):704-713. doi:10.1038/nrclinonc.2014.168
42.
Garrett M. Brodeur, Robert C. Seeger, Manfred Schwab, Harold E. Varmus and J. Michael Bishop. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science. 1984;224(4653):1121-1124. http://www.jstor.org/stable/1692440
43.
Burkhart CA, Cheng AJ, Madafiglio J, et al. Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma. JNCI Journal of the National Cancer Institute. 2003;95(18):1394-1403. doi:10.1093/jnci/djg045
44.
Chen L, Iraci N, Gherardi S, et al. p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma. Cancer Research. 2010;70(4):1377-1388. doi:10.1158/0008-5472.CAN-09-2598
45.
Cossu I, Bottoni G, Loi M, et al. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials. 2015;68:89-99. doi:10.1016/j.biomaterials.2015.07.054
46.
Evans AE, Baum E, Chard R. Do infants with stage IV-S neuroblastoma need treatment? Archives of Disease in Childhood. 1981;56(4):271-274. doi:10.1136/adc.56.4.271
47.
Guglielmi L, Cinnella C, Nardella M, et al. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death & Disease. 2014;5(2):e1081-e1081. doi:10.1038/cddis.2014.42
48.
Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine. 2013;3(10):a014415-a014415. doi:10.1101/cshperspect.a014415
49.
Huber K, Kalcheim C, Unsicker K. The development of the chromaffin cell lineage from the neural crest. Autonomic Neuroscience. 2009;151(1):10-16. doi:10.1016/j.autneu.2009.07.020
50.
Liu Z, Thiele CJ. ALK and MYCN: When Two Oncogenes Are Better than One. Cancer Cell. 2012;21(3):325-326. doi:10.1016/j.ccr.2012.03.004
51.
Marabelle A, Sapin V, Rousseau R, Periquet B, Demeocq F, Kanold J. Hypercalcemia and 13-                              -retinoic acid in post-consolidation therapy of neuroblastoma. Pediatric Blood & Cancer. 2009;52(2):280-283. doi:10.1002/pbc.21768
52.
Matthay KK, Villablanca JG, Seeger RC, et al. Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-                              -Retinoic Acid. New England Journal of Medicine. 1999;341(16):1165-1173. doi:10.1056/NEJM199910143411601
53.
Mossé YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930-935. doi:10.1038/nature07261
54.
Pastorino F, Marimpietri D, Brignole C, et al. Ligand-Targeted Liposomal Therapies of Neuroblastoma. Current Medicinal Chemistry. 2007;14(29):3070-3078. doi:10.2174/092986707782793916
55.
Qiao J, Paul P, Lee S, et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and Biophysical Research Communications. 2012;424(3):421-426. doi:10.1016/j.bbrc.2012.06.125
56.
Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Letters. 2003;197(1-2):185-192. doi:10.1016/S0304-3835(03)00108-3
57.
Schwab M. MYCN in neuronal tumours. Cancer Letters. 2004;204(2):179-187. doi:10.1016/S0304-3835(03)00454-3
58.
Sidell N. Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells In Vitro. JNCI: Journal of the National Cancer Institute. Published online 1982. doi:10.1093/jnci/68.4.589
59.
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science. 2013;339(6127):1546-1558. doi:10.1126/science.1235122
60.
Wright JH. NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED. The Journal of Experimental Medicine. 1910;12(4). doi:10.1084/jem.12.4.556
61.
Yang, LiqunKe, Xiao-XueXuan, FanTan, JuanHou, Jianbing. PHOX2B Is Associated with Neuroblastoma Cell Differentiation. Cancer Biotherapy & Radiopharmaceuticals. 31:44-51. doi:10.1089/cbr.2015.1952
62.
Zhu S, Lee JS, Guo F, et al. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell. 2012;21(3):362-373. doi:10.1016/j.ccr.2012.02.010
63.
Hasle H, Niemeyer CM. Advances in the prognostication and management of advanced MDS in children. British Journal of Haematology. 2011;154(2):185-195. doi:10.1111/j.1365-2141.2011.08724.x
64.
Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. British Journal of Haematology. 2008;140(6):610-624. doi:10.1111/j.1365-2141.2007.06958.x
65.
Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. British Journal of Haematology. 2017;177(4):526-542. doi:10.1111/bjh.14535
66.
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Reviews Cancer. 2008;8(6):473-480. doi:10.1038/nrc2394
67.
Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450(7171):903-907. doi:10.1038/nature06309
68.
Mackall CL, Merchant MS, Fry TJ. Immune-based therapies for childhood cancer. Nature Reviews Clinical Oncology. 2014;11(12):693-703. doi:10.1038/nrclinonc.2014.177
69.
Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine. 2016;22(1):26-36. doi:10.1038/nm.4015
70.
Nature Reviews Immunology. 2012;12(4). https://www.nature.com/nri/volumes/12/issues/4
71.
Majzner RG, Heitzeneder S, Mackall CL. Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell. 2017;31(4):476-485. doi:10.1016/j.ccell.2017.03.002
72.
Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nature Reviews Cancer. 2003;3(9):639-649. doi:10.1038/nrc1164
73.
Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004;23(24):4275-4283. doi:10.1038/sj.onc.1207672
74.
Slany RK. The molecular mechanics of mixed lineage leukemia. Oncogene. 2016;35(40):5215-5223. doi:10.1038/onc.2016.30
75.
Milne TA. Mouse models of MLL leukemia: recapitulating the human disease. Blood. 2017;129(16):2217-2223. doi:10.1182/blood-2016-10-691428
76.
Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545(7655):423-431. doi:10.1038/nature22395
77.
Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Research. 2017;27(1):38-58. doi:10.1038/cr.2016.154
78.
Yong CSM, Dardalhon V, Devaud C, Taylor N, Darcy PK, Kershaw MH. CAR T-cell therapy of solid tumors. Immunology and Cell Biology. 2017;95(4):356-363. doi:10.1038/icb.2016.128
79.
Fisher J, Abramowski P, Wisidagamage Don ND, et al. Avoidance of On-Target Off-Tumor Activation Using a Co-stimulation-Only Chimeric Antigen Receptor. Molecular Therapy. 2017;25(5):1234-1247. doi:10.1016/j.ymthe.2017.03.002
80.
Brown CE, Alizadeh D, Starr R, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine. 2016;375(26):2561-2569. doi:10.1056/NEJMoa1610497
81.
Morsut L, Roybal KT, Xiong X, et al. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell. 2016;164(4):780-791. doi:10.1016/j.cell.2016.01.012
82.
Rasaiyaah J, Georgiadis C, Preece R, Mock U, Qasim W. TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy. JCI Insight. 2018;3(13). doi:10.1172/jci.insight.99442
83.
Ghorashian S, Amrolia P, Veys P. Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Experimental Hematology. 2018;66:5-16. doi:10.1016/j.exphem.2018.07.002
84.
Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine. 2017;9(374). doi:10.1126/scitranslmed.aaj2013
85.
Hubert CG, Rivera M, Spangler LC, et al. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found. Cancer Research. 2016;76(8):2465-2477. doi:10.1158/0008-5472.CAN-15-2402
86.
Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Disease Models and Mechanisms. 2008;1(2-3):78-82. doi:10.1242/dmm.000976
87.
Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell. 2016;29(4):508-522. doi:10.1016/j.ccell.2016.03.002
88.
Lu B, Green B, Farr J, Lopes F, Van Raay T. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials. Cancers. 2016;8(9). doi:10.3390/cancers8090082
89.
Northcott PA, Korshunov A, Pfister SM, Taylor MD. The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology. 2012;8(6):340-351. doi:10.1038/nrneurol.2012.78
90.
Niklison-Chirou MV, Erngren I, Engskog M, et al. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes & Development. 2017;31(17):1738-1753. doi:10.1101/gad.302349.117
91.
Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nature Reviews Clinical Oncology. 2013;10(8):460-471. doi:10.1038/nrclinonc.2013.100
92.
Kotrova M, Trka J, Kneba M, Brüggemann M. Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia? Molecular Diagnosis & Therapy. 2017;21(5):481-492. doi:10.1007/s40291-017-0277-9
93.
O’Connor D, Enshaei A, Bartram J, et al. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology. 2018;36(1):34-43. doi:10.1200/JCO.2017.74.0449
94.
Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. The Lancet Oncology. 2013;14(3):199-209. doi:10.1016/S1470-2045(12)70600-9
95.
Vora A, Goulden N, Mitchell C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. The Lancet Oncology. 2014;15(8):809-818. doi:10.1016/S1470-2045(14)70243-8
96.
Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. New England Journal of Medicine. 2015;373(16):1541-1552. doi:10.1056/NEJMra1400972
97.
O’Connor D, Enshaei A, Bartram J, et al. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology. 2018;36(1):34-43. doi:10.1200/JCO.2017.74.0449