1
Weinberg RA. The biology of cancer. 2nd ed. New York: : Garland Science 2014.
2
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell 2000;100:57–70. doi:10.1016/S0092-8674(00)81683-9
3
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell 2011;144:646–74. doi:10.1016/j.cell.2011.02.013
4
Lord CJ, Ashworth A. Biology-driven cancer drug development: back to the future. BMC Biology 2010;8. doi:10.1186/1741-7007-8-38
5
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer Genome Landscapes. Science 2013;339:1546–58. doi:10.1126/science.1235122
6
Lee TI, Young RA. Transcriptional Regulation and Its Misregulation in Disease. Cell 2013;152:1237–51. doi:10.1016/j.cell.2013.02.014
7
Children’s cancer statistics | Cancer Research UK. http://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers
8
International Agency for Research on Cancer. WHO classification of tumours of the central nervous system. Revised 4th edition. Lyon: : International Agency for Research on Cancer 2016.
9
Taylor, Michael DNorthcott, Paul AKorshunov, AndreyRemke, MarcCho, Yoon-jae. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica;123:465–72.https://search.proquest.com/docview/928783888?rfr_id=info%3Axri%2Fsid%3Aprimo
10
Gibson P, Tong Y, Robinson G, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010;468:1095–9. doi:10.1038/nature09587
11
Ellison DW, Onilude OE, Lindsey JC, et al. β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. Journal of Clinical Oncology 2005;23:7951–7. doi:10.1200/JCO.2005.01.5479
12
Nataliya Zhukova. Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma. Journal of Clinical Oncology 2013;31. doi:10.1200/JCO.2012.48.5052
13
Stone TJ, Jacques TS. Medulloblastoma: selecting children for reduced treatment. Neuropathology and Applied Neurobiology 2015;41:106–8. doi:10.1111/nan.12193
14
Schwalbe EC, Lindsey JC, Nakjang S, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. The Lancet Oncology 2017;18:958–71. doi:10.1016/S1470-2045(17)30243-7
15
Pfister S, Remke M, Castoldi M, et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathologica 2009;117:457–64. doi:10.1007/s00401-008-0467-y
16
Korshunov, AndreySturm, DominikRyzhova, MarinaHovestadt, VolkerGessi, Marco. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica;128:279–89.https://search.proquest.com/docview/1545765655?OpenUrlRefId=info:xri/sid:primo&accountid=14511
17
Schwalbe EdC, Hayden JT, Rogers HA, et al. Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types. Acta Neuropathologica 2013;126:943–6. doi:10.1007/s00401-013-1206-6
18
Sturm D, Orr BA, Toprak UH, et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016;164:1060–72. doi:10.1016/j.cell.2016.01.015
19
Kirsti Sirkiä, Ulla M. Saarinen‐Pihkala, Liisa Hovi, Hannu Sariola. Autopsy in children with cancer who die while in terminal care. Medical and Pediatric Oncology 1998;30:284–9. doi:10.1002/(SICI)1096-911X(199805)30:5<284::AID-MPO4>3.0.CO;2-B
20
Buckner T, Blatt J, Smith SV. The Autopsy in Pediatrics and Pediatric Oncology: A Single-Institution Experience. Pediatric and Developmental Pathology 2006;9:374–80. doi:10.2350/06-02-0047.1
21
Bleggi-Torres LF, de Noronha L, Schneider Gugelmin E, et al. Accuracy of the smear technique in the cytological diagnosis of 650 lesions of the central nervous system. Diagnostic Cytopathology 2001;24:293–5. doi:10.1002/dc.1062
22
Hill RM, Kuijper S, Lindsey JC, et al. Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. Cancer Cell 2015;27:72–84. doi:10.1016/j.ccell.2014.11.002
23
Blümcke I, Aronica E, Becker A, et al. Low-grade epilepsy-associated neuroepithelial tumours — the 2016 WHO classification. Nature Reviews Neurology 2016;12:732–40. doi:10.1038/nrneurol.2016.173
24
Chhabda S, Carney O, D’Arco F, et al. The 2016 World Health Organization Classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know. Quantitative Imaging in Medicine and Surgery 2016;6:486–9. doi:10.21037/qims.2016.10.01
25
Schwartzentruber J, Korshunov A, Liu X-Y, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012;482:226–31. doi:10.1038/nature10833
26
Sturm D, Witt H, Hovestadt V, et al. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell 2012;22:425–37. doi:10.1016/j.ccr.2012.08.024
27
Lewis PW, Muller MM, Koletsky MS, et al. Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma. Science 2013;340:857–61. doi:10.1126/science.1232245
28
Bender S, Tang Y, Lindroth AM, et al. Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell 2013;24:660–72. doi:10.1016/j.ccr.2013.10.006
29
Hashizume R, Andor N, Ihara Y, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nature Medicine 2014;20:1394–6. doi:10.1038/nm.3716
30
Pathania M, De Jay N, Maestro N, et al. H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell 2017;32:684-700.e9. doi:10.1016/j.ccell.2017.09.014
31
Larson JD, Kasper LH, Paugh BS, et al. Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell Published Online First: December 2018. doi:10.1016/j.ccell.2018.11.015
32
Martinez-Barbera JP, Andoniadou CL. Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma. STEM CELLS 2016;34:268–76. doi:10.1002/stem.2267
33
Gump JM, Donson AM, Birks DK, et al. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathologica Communications 2015;3. doi:10.1186/s40478-015-0211-5
34
Martinez-Barbera JP, Buslei R. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. Journal of Pediatric Endocrinology and Metabolism 2015;28. doi:10.1515/jpem-2014-0442
35
Goschzik T, Gessi M, Dreschmann V, et al. Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma. Journal of Neuropathology & Experimental Neurology Published Online First: 9 January 2017. doi:10.1093/jnen/nlw116
36
Azarova AM, Gautam G, George RE. Emerging importance of ALK in neuroblastoma. Seminars in Cancer Biology 2011;21:267–75. doi:10.1016/j.semcancer.2011.09.005
37
Beierle EA. MYCN, Neuroblastoma and Focal Adhesion Kinase (FAK). Frontiers in bioscience (Elite edition);3.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171213/
38
Bell E, Chen L, Liu T, et al. MYCN oncoprotein targets and their therapeutic potential. Cancer Letters 2010;293:144–57. doi:10.1016/j.canlet.2010.01.015
39
Berry T, Luther W, Bhatnagar N, et al. The ALKF1174L Mutation Potentiates the Oncogenic Activity of MYCN in Neuroblastoma. Cancer Cell 2012;22:117–30. doi:10.1016/j.ccr.2012.06.001
40
Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nature Reviews Cancer 2003;3:203–16. doi:10.1038/nrc1014
41
Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nature Reviews Clinical Oncology 2014;11:704–13. doi:10.1038/nrclinonc.2014.168
42
Garrett M. Brodeur, Robert C. Seeger, Manfred Schwab, Harold E. Varmus and J. Michael Bishop. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science 1984;224:1121–4.http://www.jstor.org/stable/1692440
43
Burkhart CA, Cheng AJ, Madafiglio J, et al. Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma. JNCI Journal of the National Cancer Institute 2003;95:1394–403. doi:10.1093/jnci/djg045
44
Chen L, Iraci N, Gherardi S, et al. p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma. Cancer Research 2010;70:1377–88. doi:10.1158/0008-5472.CAN-09-2598
45
Cossu I, Bottoni G, Loi M, et al. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials 2015;68:89–99. doi:10.1016/j.biomaterials.2015.07.054
46
Evans AE, Baum E, Chard R. Do infants with stage IV-S neuroblastoma need treatment? Archives of Disease in Childhood 1981;56:271–4. doi:10.1136/adc.56.4.271
47
Guglielmi L, Cinnella C, Nardella M, et al. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death & Disease 2014;5:e1081–e1081. doi:10.1038/cddis.2014.42
48
Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine 2013;3:a014415–a014415. doi:10.1101/cshperspect.a014415
49
Huber K, Kalcheim C, Unsicker K. The development of the chromaffin cell lineage from the neural crest. Autonomic Neuroscience 2009;151:10–6. doi:10.1016/j.autneu.2009.07.020
50
Liu Z, Thiele CJ. ALK and MYCN: When Two Oncogenes Are Better than One. Cancer Cell 2012;21:325–6. doi:10.1016/j.ccr.2012.03.004
51
Marabelle A, Sapin V, Rousseau R, et al. Hypercalcemia and 13-                              -retinoic acid in post-consolidation therapy of neuroblastoma. Pediatric Blood & Cancer 2009;52:280–3. doi:10.1002/pbc.21768
52
Matthay KK, Villablanca JG, Seeger RC, et al. Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-                              -Retinoic Acid. New England Journal of Medicine 1999;341:1165–73. doi:10.1056/NEJM199910143411601
53
Mossé YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008;455:930–5. doi:10.1038/nature07261
54
Pastorino F, Marimpietri D, Brignole C, et al. Ligand-Targeted Liposomal Therapies of Neuroblastoma. Current Medicinal Chemistry 2007;14:3070–8. doi:10.2174/092986707782793916
55
Qiao J, Paul P, Lee S, et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and Biophysical Research Communications 2012;424:421–6. doi:10.1016/j.bbrc.2012.06.125
56
Reynolds CP, Matthay KK, Villablanca JG, et al. Retinoid therapy of high-risk neuroblastoma. Cancer Letters 2003;197:185–92. doi:10.1016/S0304-3835(03)00108-3
57
Schwab M. MYCN in neuronal tumours. Cancer Letters 2004;204:179–87. doi:10.1016/S0304-3835(03)00454-3
58
Sidell N. Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells In Vitro. JNCI: Journal of the National Cancer Institute Published Online First: 1982. doi:10.1093/jnci/68.4.589
59
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer Genome Landscapes. Science 2013;339:1546–58. doi:10.1126/science.1235122
60
Wright JH. NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED. The Journal of Experimental Medicine 1910;12. doi:10.1084/jem.12.4.556
61
Yang, LiqunKe, Xiao-XueXuan, FanTan, JuanHou, Jianbing. PHOX2B Is Associated with Neuroblastoma Cell Differentiation. Cancer Biotherapy & Radiopharmaceuticals;31:44–51. doi:10.1089/cbr.2015.1952
62
Zhu S, Lee J-S, Guo F, et al. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell 2012;21:362–73. doi:10.1016/j.ccr.2012.02.010
63
Hasle H, Niemeyer CM. Advances in the prognostication and management of advanced MDS in children. British Journal of Haematology 2011;154:185–95. doi:10.1111/j.1365-2141.2011.08724.x
64
Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. British Journal of Haematology 2008;140:610–24. doi:10.1111/j.1365-2141.2007.06958.x
65
Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. British Journal of Haematology 2017;177:526–42. doi:10.1111/bjh.14535
66
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Reviews Cancer 2008;8:473–80. doi:10.1038/nrc2394
67
Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007;450:903–7. doi:10.1038/nature06309
68
Mackall CL, Merchant MS, Fry TJ. Immune-based therapies for childhood cancer. Nature Reviews Clinical Oncology 2014;11:693–703. doi:10.1038/nrclinonc.2014.177
69
Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine 2016;22:26–36. doi:10.1038/nm.4015
70
Nature Reviews Immunology. 2012;12.https://www.nature.com/nri/volumes/12/issues/4
71
Majzner RG, Heitzeneder S, Mackall CL. Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell 2017;31:476–85. doi:10.1016/j.ccell.2017.03.002
72
Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nature Reviews Cancer 2003;3:639–49. doi:10.1038/nrc1164
73
Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 2004;23:4275–83. doi:10.1038/sj.onc.1207672
74
Slany RK. The molecular mechanics of mixed lineage leukemia. Oncogene 2016;35:5215–23. doi:10.1038/onc.2016.30
75
Milne TA. Mouse models of MLL leukemia: recapitulating the human disease. Blood 2017;129:2217–23. doi:10.1182/blood-2016-10-691428
76
Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature 2017;545:423–31. doi:10.1038/nature22395
77
Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Research 2017;27:38–58. doi:10.1038/cr.2016.154
78
Yong CSM, Dardalhon V, Devaud C, et al. CAR T-cell therapy of solid tumors. Immunology and Cell Biology 2017;95:356–63. doi:10.1038/icb.2016.128
79
Fisher J, Abramowski P, Wisidagamage Don ND, et al. Avoidance of On-Target Off-Tumor Activation Using a Co-stimulation-Only Chimeric Antigen Receptor. Molecular Therapy 2017;25:1234–47. doi:10.1016/j.ymthe.2017.03.002
80
Brown CE, Alizadeh D, Starr R, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine 2016;375:2561–9. doi:10.1056/NEJMoa1610497
81
Morsut L, Roybal KT, Xiong X, et al. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell 2016;164:780–91. doi:10.1016/j.cell.2016.01.012
82
Rasaiyaah J, Georgiadis C, Preece R, et al. TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy. JCI Insight 2018;3. doi:10.1172/jci.insight.99442
83
Ghorashian S, Amrolia P, Veys P. Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Experimental Hematology 2018;66:5–16. doi:10.1016/j.exphem.2018.07.002
84
Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine 2017;9. doi:10.1126/scitranslmed.aaj2013
85
Hubert CG, Rivera M, Spangler LC, et al. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found. Cancer Research 2016;76:2465–77. doi:10.1158/0008-5472.CAN-15-2402
86
Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Disease Models and Mechanisms 2008;1:78–82. doi:10.1242/dmm.000976
87
Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell 2016;29:508–22. doi:10.1016/j.ccell.2016.03.002
88
Lu B, Green B, Farr J, et al. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials. Cancers 2016;8. doi:10.3390/cancers8090082
89
Northcott PA, Korshunov A, Pfister SM, et al. The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology 2012;8:340–51. doi:10.1038/nrneurol.2012.78
90
Niklison-Chirou MV, Erngren I, Engskog M, et al. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes & Development 2017;31:1738–53. doi:10.1101/gad.302349.117
91
Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nature Reviews Clinical Oncology 2013;10:460–71. doi:10.1038/nrclinonc.2013.100
92
Kotrova M, Trka J, Kneba M, et al. Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia? Molecular Diagnosis & Therapy 2017;21:481–92. doi:10.1007/s40291-017-0277-9
93
O’Connor D, Enshaei A, Bartram J, et al. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology 2018;36:34–43. doi:10.1200/JCO.2017.74.0449
94
Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. The Lancet Oncology 2013;14:199–209. doi:10.1016/S1470-2045(12)70600-9
95
Vora A, Goulden N, Mitchell C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. The Lancet Oncology 2014;15:809–18. doi:10.1016/S1470-2045(14)70243-8
96
Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. New England Journal of Medicine 2015;373:1541–52. doi:10.1056/NEJMra1400972
97
O’Connor D, Enshaei A, Bartram J, et al. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology 2018;36:34–43. doi:10.1200/JCO.2017.74.0449