1.
Weinberg RA. The biology of cancer. 2nd ed. New York: Garland Science; 2014.
2.
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000 Jan;100(1):57–70.
3.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011 Mar;144(5):646–74.
4.
Lord CJ, Ashworth A. Biology-driven cancer drug development: back to the future. BMC Biology. 2010;8(1).
5.
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science. 2013 Mar 29;339(6127):1546–58.
6.
Lee TI, Young RA. Transcriptional Regulation and Its Misregulation in Disease. Cell. 2013 Mar;152(6):1237–51.
7.
Children’s cancer statistics | Cancer Research UK [Internet]. Available from: http://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers
8.
International Agency for Research on Cancer. WHO classification of tumours of the central nervous system. Revised 4th edition. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. Lyon: International Agency for Research on Cancer; 2016.
9.
Taylor, Michael DNorthcott, Paul AKorshunov, AndreyRemke, MarcCho, Yoon-jae. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica [Internet]. 123(3):465–72. Available from: https://search.proquest.com/docview/928783888?rfr_id=info%3Axri%2Fsid%3Aprimo
10.
Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010 Dec;468(7327):1095–9.
11.
Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, et al. β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. Journal of Clinical Oncology. 2005 Nov;23(31):7951–7.
12.
Nataliya Zhukova. Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma. Journal of Clinical Oncology [Internet]. 2013;31(23). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878050/
13.
Stone TJ, Jacques TS. Medulloblastoma: selecting children for reduced treatment. Neuropathology and Applied Neurobiology. 2015 Feb;41(2):106–8.
14.
Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, Hicks D, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. The Lancet Oncology. 2017 Jul;18(7):958–71.
15.
Pfister S, Remke M, Castoldi M, Bai AHC, Muckenthaler MU, Kulozik A, et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathologica. 2009 Apr;117(4):457–64.
16.
Korshunov, AndreySturm, DominikRyzhova, MarinaHovestadt, VolkerGessi, Marco. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica [Internet]. 128(8):279–89. Available from: https://search.proquest.com/docview/1545765655?OpenUrlRefId=info:xri/sid:primo&accountid=14511
17.
Schwalbe EdC, Hayden JT, Rogers HA, Miller S, Lindsey JC, Hill RM, et al. Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types. Acta Neuropathologica. 2013 Dec;126(6):943–6.
18.
Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell. 2016 Feb;164(5):1060–72.
19.
Kirsti Sirkiä, Ulla M. Saarinen‐Pihkala, Liisa Hovi, Hannu Sariola. Autopsy in children with cancer who die while in terminal care. Medical and Pediatric Oncology [Internet]. 1998;30(5):284–9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-911X(199805)30:5%3C284::AID-MPO4%3E3.0.CO;2-B
20.
Buckner T, Blatt J, Smith SV. The Autopsy in Pediatrics and Pediatric Oncology: A Single-Institution Experience. Pediatric and Developmental Pathology. 2006 Sep;9(5):374–80.
21.
Bleggi-Torres LF, de Noronha L, Schneider Gugelmin E, Martins Sebastião AP, Werner B, Marques Maggio E, et al. Accuracy of the smear technique in the cytological diagnosis of 650 lesions of the central nervous system. Diagnostic Cytopathology. 2001 Apr;24(4):293–5.
22.
Hill RM, Kuijper S, Lindsey JC, Petrie K, Schwalbe EC, Barker K, et al. Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. Cancer Cell. 2015 Jan;27(1):72–84.
23.
Blümcke I, Aronica E, Becker A, Capper D, Coras R, Honavar M, et al. Low-grade epilepsy-associated neuroepithelial tumours — the 2016 WHO classification. Nature Reviews Neurology. 2016 Dec;12(12):732–40.
24.
Chhabda S, Carney O, D’Arco F, Jacques TS, Mankad K. The 2016 World Health Organization Classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know. Quantitative Imaging in Medicine and Surgery. 2016 Oct;6(5):486–9.
25.
Schwartzentruber J, Korshunov A, Liu XY, Jones DTW, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012 Feb;482(7384):226–31.
26.
Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DTW, Konermann C, et al. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell. 2012 Oct;22(4):425–37.
27.
Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, et al. Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma. Science. 2013 May 17;340(6134):857–61.
28.
Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW, Kool M, et al. Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell. 2013 Nov;24(5):660–72.
29.
Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nature Medicine. 2014 Dec;20(12):1394–6.
30.
Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, et al. H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell. 2017 Nov;32(5):684-700.e9.
31.
Larson JD, Kasper LH, Paugh BS, Jin H, Wu G, Kwon CH, et al. Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell. 2018 Dec;
32.
Martinez-Barbera JP, Andoniadou CL. Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma. STEM CELLS. 2016 Feb;34(2):268–76.
33.
Gump JM, Donson AM, Birks DK, Amani VM, Rao KK, Griesinger AM, et al. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathologica Communications. 2015 Dec;3(1).
34.
Martinez-Barbera JP, Buslei R. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. Journal of Pediatric Endocrinology and Metabolism. 2015 Jan 1;28(1–2).
35.
Goschzik T, Gessi M, Dreschmann V, Gebhardt U, Wang L, Yamaguchi S, et al. Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma. Journal of Neuropathology & Experimental Neurology. 2017 Jan 9;
36.
Azarova AM, Gautam G, George RE. Emerging importance of ALK in neuroblastoma. Seminars in Cancer Biology. 2011 Oct;21(4):267–75.
37.
Beierle EA. MYCN, Neuroblastoma and Focal Adhesion Kinase (FAK). Frontiers in bioscience (Elite edition) [Internet]. 3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171213/
38.
Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA. MYCN oncoprotein targets and their therapeutic potential. Cancer Letters. 2010 Jul;293(2):144–57.
39.
Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, et al. The ALKF1174L Mutation Potentiates the Oncogenic Activity of MYCN in Neuroblastoma. Cancer Cell. 2012 Jul;22(1):117–30.
40.
Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nature Reviews Cancer. 2003 Mar;3(3):203–16.
41.
Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nature Reviews Clinical Oncology. 2014 Dec;11(12):704–13.
42.
Garrett M. Brodeur, Robert C. Seeger, Manfred Schwab, Harold E. Varmus and J. Michael Bishop. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science [Internet]. 1984;224(4653):1121–4. Available from: http://www.jstor.org/stable/1692440
43.
Burkhart CA, Cheng AJ, Madafiglio J, Kavallaris M, Mili M, Marshall GM, et al. Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma. JNCI Journal of the National Cancer Institute. 2003 Sep 17;95(18):1394–403.
44.
Chen L, Iraci N, Gherardi S, Gamble LD, Wood KM, Perini G, et al. p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma. Cancer Research. 2010 Feb 15;70(4):1377–88.
45.
Cossu I, Bottoni G, Loi M, Emionite L, Bartolini A, Di Paolo D, et al. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials. 2015 Nov;68:89–99.
46.
Evans AE, Baum E, Chard R. Do infants with stage IV-S neuroblastoma need treatment? Archives of Disease in Childhood. 1981 Apr 1;56(4):271–4.
47.
Guglielmi L, Cinnella C, Nardella M, Maresca G, Valentini A, Mercanti D, et al. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death & Disease. 2014 Feb;5(2):e1081–e1081.
48.
Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine. 2013 Oct 1;3(10):a014415–a014415.
49.
Huber K, Kalcheim C, Unsicker K. The development of the chromaffin cell lineage from the neural crest. Autonomic Neuroscience. 2009 Nov;151(1):10–6.
50.
Liu Z, Thiele CJ. ALK and MYCN: When Two Oncogenes Are Better than One. Cancer Cell. 2012 Mar;21(3):325–6.
51.
Marabelle A, Sapin V, Rousseau R, Periquet B, Demeocq F, Kanold J. Hypercalcemia and 13-                              -retinoic acid in post-consolidation therapy of neuroblastoma. Pediatric Blood & Cancer. 2009 Feb;52(2):280–3.
52.
Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-                              -Retinoic Acid. New England Journal of Medicine. 1999 Oct 14;341(16):1165–73.
53.
Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008 Oct;455(7215):930–5.
54.
Pastorino F, Marimpietri D, Brignole C, Paolo D, Pagnan G, Daga A, et al. Ligand-Targeted Liposomal Therapies of Neuroblastoma. Current Medicinal Chemistry. 2007 Dec 1;14(29):3070–8.
55.
Qiao J, Paul P, Lee S, Qiao L, Josifi E, Tiao JR, et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and Biophysical Research Communications. 2012 Aug;424(3):421–6.
56.
Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Letters. 2003 Jul;197(1–2):185–92.
57.
Schwab M. MYCN in neuronal tumours. Cancer Letters. 2004 Feb 20;204(2):179–87.
58.
Sidell N. Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells In Vitro. JNCI: Journal of the National Cancer Institute. 1982;
59.
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science. 2013 Mar 29;339(6127):1546–58.
60.
Wright JH. NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED. The Journal of Experimental Medicine. 1910;12(4).
61.
Yang, LiqunKe, Xiao-XueXuan, FanTan, JuanHou, Jianbing. PHOX2B Is Associated with Neuroblastoma Cell Differentiation. Cancer Biotherapy & Radiopharmaceuticals [Internet]. 31:44–51. Available from: https://search.proquest.com/docview/1776665507?rfr_id=info%3Axri%2Fsid%3Aprimo
62.
Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL, et al. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell. 2012 Mar;21(3):362–73.
63.
Hasle H, Niemeyer CM. Advances in the prognostication and management of advanced MDS in children. British Journal of Haematology. 2011 Jul;154(2):185–95.
64.
Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. British Journal of Haematology. 2008 Mar;140(6):610–24.
65.
Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. British Journal of Haematology. 2017 May;177(4):526–42.
66.
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Reviews Cancer. 2008 Jun;8(6):473–80.
67.
Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007 Dec;450(7171):903–7.
68.
Mackall CL, Merchant MS, Fry TJ. Immune-based therapies for childhood cancer. Nature Reviews Clinical Oncology. 2014 Dec;11(12):693–703.
69.
Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine. 2016 Jan;22(1):26–36.
70.
Nature Reviews Immunology. 2012;12(4). Available from: https://www.nature.com/nri/volumes/12/issues/4
71.
Majzner RG, Heitzeneder S, Mackall CL. Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell. 2017 Apr;31(4):476–85.
72.
Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nature Reviews Cancer. 2003 Sep;3(9):639–49.
73.
Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004 May;23(24):4275–83.
74.
Slany RK. The molecular mechanics of mixed lineage leukemia. Oncogene. 2016 Oct;35(40):5215–23.
75.
Milne TA. Mouse models of MLL leukemia: recapitulating the human disease. Blood. 2017 Apr 20;129(16):2217–23.
76.
Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature. 2017 May 24;545(7655):423–31.
77.
Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Research. 2017 Jan;27(1):38–58.
78.
Yong CSM, Dardalhon V, Devaud C, Taylor N, Darcy PK, Kershaw MH. CAR T-cell therapy of solid tumors. Immunology and Cell Biology. 2017 Apr;95(4):356–63.
79.
Fisher J, Abramowski P, Wisidagamage Don ND, Flutter B, Capsomidis A, Cheung GWK, et al. Avoidance of On-Target Off-Tumor Activation Using a Co-stimulation-Only Chimeric Antigen Receptor. Molecular Therapy. 2017 May;25(5):1234–47.
80.
Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine. 2016 Dec 29;375(26):2561–9.
81.
Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, et al. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell. 2016 Feb;164(4):780–91.
82.
Rasaiyaah J, Georgiadis C, Preece R, Mock U, Qasim W. TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy. JCI Insight. 2018 Jul 12;3(13).
83.
Ghorashian S, Amrolia P, Veys P. Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Experimental Hematology. 2018 Oct;66:5–16.
84.
Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine. 2017 Jan 25;9(374).
85.
Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, et al. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found. Cancer Research. 2016 Apr 15;76(8):2465–77.
86.
Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Disease Models and Mechanisms. 2008 Sep 1;1(2–3):78–82.
87.
Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell. 2016 Apr;29(4):508–22.
88.
Lu B, Green B, Farr J, Lopes F, Van Raay T. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials. Cancers. 2016 Sep 1;8(9).
89.
Northcott PA, Korshunov A, Pfister SM, Taylor MD. The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology. 2012 Jun;8(6):340–51.
90.
Niklison-Chirou MV, Erngren I, Engskog M, Haglöf J, Picard D, Remke M, et al. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes & Development. 2017 Sep 1;31(17):1738–53.
91.
Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nature Reviews Clinical Oncology. 2013 Aug;10(8):460–71.
92.
Kotrova M, Trka J, Kneba M, Brüggemann M. Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia? Molecular Diagnosis & Therapy. 2017 Oct;21(5):481–92.
93.
O’Connor D, Enshaei A, Bartram J, Hancock J, Harrison CJ, Hough R, et al. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology. 2018 Jan;36(1):34–43.
94.
Vora A, Goulden N, Wade R, Mitchell C, Hancock J, Hough R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. The Lancet Oncology. 2013 Mar;14(3):199–209.
95.
Vora A, Goulden N, Mitchell C, Hancock J, Hough R, Rowntree C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. The Lancet Oncology. 2014 Jul;15(8):809–18.
96.
Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. New England Journal of Medicine. 2015 Oct 15;373(16):1541–52.
97.
O’Connor D, Enshaei A, Bartram J, Hancock J, Harrison CJ, Hough R, et al. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology. 2018 Jan;36(1):34–43.