1.
Weinberg, R. A. The biology of cancer. (Garland Science, 2014).
2.
Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer. Cell 100, 57–70 (2000).
3.
Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 (2011).
4.
Lord, C. J. & Ashworth, A. Biology-driven cancer drug development: back to the future. BMC Biology 8, (2010).
5.
Vogelstein, B. et al. Cancer Genome Landscapes. Science 339, 1546–1558 (2013).
6.
Lee, T. I. & Young, R. A. Transcriptional Regulation and Its Misregulation in Disease. Cell 152, 1237–1251 (2013).
7.
Children’s cancer statistics | Cancer Research UK. http://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers.
8.
International Agency for Research on Cancer. WHO classification of tumours of the central nervous system. (International Agency for Research on Cancer, 2016).
9.
Taylor, Michael DNorthcott, Paul AKorshunov, AndreyRemke, MarcCho, Yoon-jae. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica 123, 465–72.
10.
Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).
11.
Ellison, D. W. et al. β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. Journal of Clinical Oncology 23, 7951–7957 (2005).
12.
Nataliya Zhukova. Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma. Journal of Clinical Oncology 31, (2013).
13.
Stone, T. J. & Jacques, T. S. Medulloblastoma: selecting children for reduced treatment. Neuropathology and Applied Neurobiology 41, 106–108 (2015).
14.
Schwalbe, E. C. et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. The Lancet Oncology 18, 958–971 (2017).
15.
Pfister, S. et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathologica 117, 457–464 (2009).
16.
Korshunov, AndreySturm, DominikRyzhova, MarinaHovestadt, VolkerGessi, Marco. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica 128, 279–89.
17.
Schwalbe, Ed. C. et al. Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types. Acta Neuropathologica 126, 943–946 (2013).
18.
Sturm, D. et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 164, 1060–1072 (2016).
19.
Kirsti Sirkiä, Ulla M. Saarinen‐Pihkala, Liisa Hovi, Hannu Sariola. Autopsy in children with cancer who die while in terminal care. Medical and Pediatric Oncology 30, 284–289 (1998).
20.
Buckner, T., Blatt, J. & Smith, S. V. The Autopsy in Pediatrics and Pediatric Oncology: A Single-Institution Experience. Pediatric and Developmental Pathology 9, 374–380 (2006).
21.
Bleggi-Torres, L. F. et al. Accuracy of the smear technique in the cytological diagnosis of 650 lesions of the central nervous system. Diagnostic Cytopathology 24, 293–295 (2001).
22.
Hill, R. M. et al. Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. Cancer Cell 27, 72–84 (2015).
23.
Blümcke, I. et al. Low-grade epilepsy-associated neuroepithelial tumours — the 2016 WHO classification. Nature Reviews Neurology 12, 732–740 (2016).
24.
Chhabda, S., Carney, O., D’Arco, F., Jacques, T. S. & Mankad, K. The 2016 World Health Organization Classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know. Quantitative Imaging in Medicine and Surgery 6, 486–489 (2016).
25.
Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).
26.
Sturm, D. et al. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell 22, 425–437 (2012).
27.
Lewis, P. W. et al. Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma. Science 340, 857–861 (2013).
28.
Bender, S. et al. Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell 24, 660–672 (2013).
29.
Hashizume, R. et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nature Medicine 20, 1394–1396 (2014).
30.
Pathania, M. et al. H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell 32, 684-700.e9 (2017).
31.
Larson, J. D. et al. Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell (2018) doi:10.1016/j.ccell.2018.11.015.
32.
Martinez-Barbera, J. P. & Andoniadou, C. L. Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma. STEM CELLS 34, 268–276 (2016).
33.
Gump, J. M. et al. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathologica Communications 3, (2015).
34.
Martinez-Barbera, J. P. & Buslei, R. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. Journal of Pediatric Endocrinology and Metabolism 28, (2015).
35.
Goschzik, T. et al. Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma. Journal of Neuropathology & Experimental Neurology (2017) doi:10.1093/jnen/nlw116.
36.
Azarova, A. M., Gautam, G. & George, R. E. Emerging importance of ALK in neuroblastoma. Seminars in Cancer Biology 21, 267–275 (2011).
37.
Beierle, E. A. MYCN, Neuroblastoma and Focal Adhesion Kinase (FAK). Frontiers in bioscience (Elite edition) 3,.
38.
Bell, E. et al. MYCN oncoprotein targets and their therapeutic potential. Cancer Letters 293, 144–157 (2010).
39.
Berry, T. et al. The ALKF1174L Mutation Potentiates the Oncogenic Activity of MYCN in Neuroblastoma. Cancer Cell 22, 117–130 (2012).
40.
Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nature Reviews Cancer 3, 203–216 (2003).
41.
Brodeur, G. M. & Bagatell, R. Mechanisms of neuroblastoma regression. Nature Reviews Clinical Oncology 11, 704–713 (2014).
42.
Garrett M. Brodeur, Robert C. Seeger, Manfred Schwab, Harold E. Varmus and J. Michael Bishop. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science 224, 1121–1124 (1984).
43.
Burkhart, C. A. et al. Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma. JNCI Journal of the National Cancer Institute 95, 1394–1403 (2003).
44.
Chen, L. et al. p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma. Cancer Research 70, 1377–1388 (2010).
45.
Cossu, I. et al. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials 68, 89–99 (2015).
46.
Evans, A. E., Baum, E. & Chard, R. Do infants with stage IV-S neuroblastoma need treatment? Archives of Disease in Childhood 56, 271–274 (1981).
47.
Guglielmi, L. et al. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death & Disease 5, e1081–e1081 (2014).
48.
Huang, M. & Weiss, W. A. Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine 3, a014415–a014415 (2013).
49.
Huber, K., Kalcheim, C. & Unsicker, K. The development of the chromaffin cell lineage from the neural crest. Autonomic Neuroscience 151, 10–16 (2009).
50.
Liu, Z. & Thiele, C. J. ALK and MYCN: When Two Oncogenes Are Better than One. Cancer Cell 21, 325–326 (2012).
51.
Marabelle, A. et al. Hypercalcemia and 13-                              -retinoic acid in post-consolidation therapy of neuroblastoma. Pediatric Blood & Cancer 52, 280–283 (2009).
52.
Matthay, K. K. et al. Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-                              -Retinoic Acid. New England Journal of Medicine 341, 1165–1173 (1999).
53.
Mossé, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).
54.
Pastorino, F. et al. Ligand-Targeted Liposomal Therapies of Neuroblastoma. Current Medicinal Chemistry 14, 3070–3078 (2007).
55.
Qiao, J. et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and Biophysical Research Communications 424, 421–426 (2012).
56.
Reynolds, C. P., Matthay, K. K., Villablanca, J. G. & Maurer, B. J. Retinoid therapy of high-risk neuroblastoma. Cancer Letters 197, 185–192 (2003).
57.
Schwab, M. MYCN in neuronal tumours. Cancer Letters 204, 179–187 (2004).
58.
Sidell, N. Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells In Vitro. JNCI: Journal of the National Cancer Institute (1982) doi:10.1093/jnci/68.4.589.
59.
Vogelstein, B. et al. Cancer Genome Landscapes. Science 339, 1546–1558 (2013).
60.
Wright, J. H. NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED. The Journal of Experimental Medicine 12, (1910).
61.
Yang, LiqunKe, Xiao-XueXuan, FanTan, JuanHou, Jianbing. PHOX2B Is Associated with Neuroblastoma Cell Differentiation. Cancer Biotherapy & Radiopharmaceuticals 31, 44–51.
62.
Zhu, S. et al. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell 21, 362–373 (2012).
63.
Hasle, H. & Niemeyer, C. M. Advances in the prognostication and management of advanced MDS in children. British Journal of Haematology 154, 185–195 (2011).
64.
Niemeyer, C. M. & Kratz, C. P. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. British Journal of Haematology 140, 610–624 (2008).
65.
Wegman-Ostrosky, T. & Savage, S. A. The genomics of inherited bone marrow failure: from mechanism to the clinic. British Journal of Haematology 177, 526–542 (2017).
66.
Strebhardt, K. & Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Reviews Cancer 8, 473–480 (2008).
67.
Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).
68.
Mackall, C. L., Merchant, M. S. & Fry, T. J. Immune-based therapies for childhood cancer. Nature Reviews Clinical Oncology 11, 693–703 (2014).
69.
Klebanoff, C. A., Rosenberg, S. A. & Restifo, N. P. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine 22, 26–36 (2016).
70.
Nature Reviews Immunology. 12, (2012).
71.
Majzner, R. G., Heitzeneder, S. & Mackall, C. L. Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell 31, 476–485 (2017).
72.
Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nature Reviews Cancer 3, 639–649 (2003).
73.
Zelent, A., Greaves, M. & Enver, T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 23, 4275–4283 (2004).
74.
Slany, R. K. The molecular mechanics of mixed lineage leukemia. Oncogene 35, 5215–5223 (2016).
75.
Milne, T. A. Mouse models of MLL leukemia: recapitulating the human disease. Blood 129, 2217–2223 (2017).
76.
Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).
77.
Johnson, L. A. & June, C. H. Driving gene-engineered T cell immunotherapy of cancer. Cell Research 27, 38–58 (2017).
78.
Yong, C. S. M. et al. CAR T-cell therapy of solid tumors. Immunology and Cell Biology 95, 356–363 (2017).
79.
Fisher, J. et al. Avoidance of On-Target Off-Tumor Activation Using a Co-stimulation-Only Chimeric Antigen Receptor. Molecular Therapy 25, 1234–1247 (2017).
80.
Brown, C. E. et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine 375, 2561–2569 (2016).
81.
Morsut, L. et al. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell 164, 780–791 (2016).
82.
Rasaiyaah, J., Georgiadis, C., Preece, R., Mock, U. & Qasim, W. TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy. JCI Insight 3, (2018).
83.
Ghorashian, S., Amrolia, P. & Veys, P. Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Experimental Hematology 66, 5–16 (2018).
84.
Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine 9, (2017).
85.
Hubert, C. G. et al. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found. Cancer Research 76, 2465–2477 (2016).
86.
Richmond, A. & Su, Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Disease Models and Mechanisms 1, 78–82 (2008).
87.
Phoenix, T. N. et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell 29, 508–522 (2016).
88.
Lu, B., Green, B., Farr, J., Lopes, F. & Van Raay, T. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials. Cancers 8, (2016).
89.
Northcott, P. A., Korshunov, A., Pfister, S. M. & Taylor, M. D. The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology 8, 340–351 (2012).
90.
Niklison-Chirou, M. V. et al. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes & Development 31, 1738–1753 (2017).
91.
Hourigan, C. S. & Karp, J. E. Minimal residual disease in acute myeloid leukaemia. Nature Reviews Clinical Oncology 10, 460–471 (2013).
92.
Kotrova, M., Trka, J., Kneba, M. & Brüggemann, M. Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia? Molecular Diagnosis & Therapy 21, 481–492 (2017).
93.
O’Connor, D. et al. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology 36, 34–43 (2018).
94.
Vora, A. et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. The Lancet Oncology 14, 199–209 (2013).
95.
Vora, A. et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. The Lancet Oncology 15, 809–818 (2014).
96.
Hunger, S. P. & Mullighan, C. G. Acute Lymphoblastic Leukemia in Children. New England Journal of Medicine 373, 1541–1552 (2015).
97.
O’Connor, D. et al. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology 36, 34–43 (2018).