[1]
R. A. Weinberg, The biology of cancer, 2nd ed. New York: Garland Science, 2014.
[2]
D. Hanahan and R. A. Weinberg, ‘The Hallmarks of Cancer’, Cell, vol. 100, no. 1, pp. 57–70, Jan. 2000, doi: 10.1016/S0092-8674(00)81683-9.
[3]
D. Hanahan and R. A. Weinberg, ‘Hallmarks of Cancer: The Next Generation’, Cell, vol. 144, no. 5, pp. 646–674, Mar. 2011, doi: 10.1016/j.cell.2011.02.013.
[4]
C. J. Lord and A. Ashworth, ‘Biology-driven cancer drug development: back to the future’, BMC Biology, vol. 8, no. 1, 2010, doi: 10.1186/1741-7007-8-38.
[5]
B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz, and K. W. Kinzler, ‘Cancer Genome Landscapes’, Science, vol. 339, no. 6127, pp. 1546–1558, Mar. 2013, doi: 10.1126/science.1235122.
[6]
T. I. Lee and R. A. Young, ‘Transcriptional Regulation and Its Misregulation in Disease’, Cell, vol. 152, no. 6, pp. 1237–1251, Mar. 2013, doi: 10.1016/j.cell.2013.02.014.
[7]
‘Children’s cancer statistics | Cancer Research UK’. [Online]. Available: http://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers
[8]
International Agency for Research on Cancer, WHO classification of tumours of the central nervous system, Revised 4th edition. Lyon: International Agency for Research on Cancer, 2016.
[9]
Taylor, Michael DNorthcott, Paul AKorshunov, AndreyRemke, MarcCho, Yoon-jae, ‘Molecular subgroups of medulloblastoma: the current consensus’, Acta Neuropathologica, vol. 123, no. 3, pp. 465–72 [Online]. Available: https://search.proquest.com/docview/928783888?rfr_id=info%3Axri%2Fsid%3Aprimo
[10]
P. Gibson et al., ‘Subtypes of medulloblastoma have distinct developmental origins’, Nature, vol. 468, no. 7327, pp. 1095–1099, Dec. 2010, doi: 10.1038/nature09587.
[11]
D. W. Ellison et al., ‘β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee’, Journal of Clinical Oncology, vol. 23, no. 31, pp. 7951–7957, Nov. 2005, doi: 10.1200/JCO.2005.01.5479.
[12]
Nataliya Zhukova, ‘Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma’, Journal of Clinical Oncology, vol. 31, no. 23, 2013, doi: 10.1200/JCO.2012.48.5052. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878050/
[13]
T. J. Stone and T. S. Jacques, ‘Medulloblastoma: selecting children for reduced treatment’, Neuropathology and Applied Neurobiology, vol. 41, no. 2, pp. 106–108, Feb. 2015, doi: 10.1111/nan.12193.
[14]
E. C. Schwalbe et al., ‘Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study’, The Lancet Oncology, vol. 18, no. 7, pp. 958–971, Jul. 2017, doi: 10.1016/S1470-2045(17)30243-7.
[15]
S. Pfister et al., ‘Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes’, Acta Neuropathologica, vol. 117, no. 4, pp. 457–464, Apr. 2009, doi: 10.1007/s00401-008-0467-y.
[16]
Korshunov, AndreySturm, DominikRyzhova, MarinaHovestadt, VolkerGessi, Marco, ‘Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity’, Acta Neuropathologica, vol. 128, no. 8, pp. 279–89 [Online]. Available: https://search.proquest.com/docview/1545765655?OpenUrlRefId=info:xri/sid:primo&accountid=14511
[17]
Ed. C. Schwalbe et al., ‘Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types’, Acta Neuropathologica, vol. 126, no. 6, pp. 943–946, Dec. 2013, doi: 10.1007/s00401-013-1206-6.
[18]
D. Sturm et al., ‘New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs’, Cell, vol. 164, no. 5, pp. 1060–1072, Feb. 2016, doi: 10.1016/j.cell.2016.01.015.
[19]
Kirsti Sirkiä, Ulla M. Saarinen‐Pihkala, Liisa Hovi, Hannu Sariola, ‘Autopsy in children with cancer who die while in terminal care’, Medical and Pediatric Oncology, vol. 30, no. 5, pp. 284–289, 1998, doi: 10.1002/(SICI)1096-911X(199805)30:5<284::AID-MPO4>3.0.CO;2-B. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-911X(199805)30:5%3C284::AID-MPO4%3E3.0.CO;2-B
[20]
T. Buckner, J. Blatt, and S. V. Smith, ‘The Autopsy in Pediatrics and Pediatric Oncology: A Single-Institution Experience’, Pediatric and Developmental Pathology, vol. 9, no. 5, pp. 374–380, Sep. 2006, doi: 10.2350/06-02-0047.1.
[21]
L. F. Bleggi-Torres et al., ‘Accuracy of the smear technique in the cytological diagnosis of 650 lesions of the central nervous system’, Diagnostic Cytopathology, vol. 24, no. 4, pp. 293–295, Apr. 2001, doi: 10.1002/dc.1062.
[22]
R. M. Hill et al., ‘Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease’, Cancer Cell, vol. 27, no. 1, pp. 72–84, Jan. 2015, doi: 10.1016/j.ccell.2014.11.002.
[23]
I. Blümcke et al., ‘Low-grade epilepsy-associated neuroepithelial tumours — the 2016 WHO classification’, Nature Reviews Neurology, vol. 12, no. 12, pp. 732–740, Dec. 2016, doi: 10.1038/nrneurol.2016.173.
[24]
S. Chhabda, O. Carney, F. D’Arco, T. S. Jacques, and K. Mankad, ‘The 2016 World Health Organization Classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know’, Quantitative Imaging in Medicine and Surgery, vol. 6, no. 5, pp. 486–489, Oct. 2016, doi: 10.21037/qims.2016.10.01.
[25]
J. Schwartzentruber et al., ‘Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma’, Nature, vol. 482, no. 7384, pp. 226–231, Feb. 2012, doi: 10.1038/nature10833.
[26]
D. Sturm et al., ‘Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma’, Cancer Cell, vol. 22, no. 4, pp. 425–437, Oct. 2012, doi: 10.1016/j.ccr.2012.08.024.
[27]
P. W. Lewis et al., ‘Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma’, Science, vol. 340, no. 6134, pp. 857–861, May 2013, doi: 10.1126/science.1232245.
[28]
S. Bender et al., ‘Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas’, Cancer Cell, vol. 24, no. 5, pp. 660–672, Nov. 2013, doi: 10.1016/j.ccr.2013.10.006.
[29]
R. Hashizume et al., ‘Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma’, Nature Medicine, vol. 20, no. 12, pp. 1394–1396, Dec. 2014, doi: 10.1038/nm.3716.
[30]
M. Pathania et al., ‘H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas’, Cancer Cell, vol. 32, no. 5, pp. 684-700.e9, Nov. 2017, doi: 10.1016/j.ccell.2017.09.014.
[31]
J. D. Larson et al., ‘Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression’, Cancer Cell, Dec. 2018, doi: 10.1016/j.ccell.2018.11.015.
[32]
J. P. Martinez-Barbera and C. L. Andoniadou, ‘Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma’, STEM CELLS, vol. 34, no. 2, pp. 268–276, Feb. 2016, doi: 10.1002/stem.2267.
[33]
J. M. Gump et al., ‘Identification of targets for rational pharmacological therapy in childhood craniopharyngioma’, Acta Neuropathologica Communications, vol. 3, no. 1, Dec. 2015, doi: 10.1186/s40478-015-0211-5.
[34]
J. P. Martinez-Barbera and R. Buslei, ‘Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models’, Journal of Pediatric Endocrinology and Metabolism, vol. 28, no. 1–2, Jan. 2015, doi: 10.1515/jpem-2014-0442.
[35]
T. Goschzik et al., ‘Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma’, Journal of Neuropathology & Experimental Neurology, Jan. 2017, doi: 10.1093/jnen/nlw116.
[36]
A. M. Azarova, G. Gautam, and R. E. George, ‘Emerging importance of ALK in neuroblastoma’, Seminars in Cancer Biology, vol. 21, no. 4, pp. 267–275, Oct. 2011, doi: 10.1016/j.semcancer.2011.09.005.
[37]
E. A. Beierle, ‘MYCN, Neuroblastoma and Focal Adhesion Kinase (FAK)’, Frontiers in bioscience (Elite edition), vol. 3 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171213/
[38]
E. Bell, L. Chen, T. Liu, G. M. Marshall, J. Lunec, and D. A. Tweddle, ‘MYCN oncoprotein targets and their therapeutic potential’, Cancer Letters, vol. 293, no. 2, pp. 144–157, Jul. 2010, doi: 10.1016/j.canlet.2010.01.015.
[39]
T. Berry et al., ‘The ALKF1174L Mutation Potentiates the Oncogenic Activity of MYCN in Neuroblastoma’, Cancer Cell, vol. 22, no. 1, pp. 117–130, Jul. 2012, doi: 10.1016/j.ccr.2012.06.001.
[40]
G. M. Brodeur, ‘Neuroblastoma: biological insights into a clinical enigma’, Nature Reviews Cancer, vol. 3, no. 3, pp. 203–216, Mar. 2003, doi: 10.1038/nrc1014.
[41]
G. M. Brodeur and R. Bagatell, ‘Mechanisms of neuroblastoma regression’, Nature Reviews Clinical Oncology, vol. 11, no. 12, pp. 704–713, Dec. 2014, doi: 10.1038/nrclinonc.2014.168.
[42]
Garrett M. Brodeur, Robert C. Seeger, Manfred Schwab, Harold E. Varmus and J. Michael Bishop, ‘Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage’, Science, vol. 224, no. 4653, pp. 1121–1124, 1984 [Online]. Available: http://www.jstor.org/stable/1692440
[43]
C. A. Burkhart et al., ‘Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma’, JNCI Journal of the National Cancer Institute, vol. 95, no. 18, pp. 1394–1403, Sep. 2003, doi: 10.1093/jnci/djg045.
[44]
L. Chen et al., ‘p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma’, Cancer Research, vol. 70, no. 4, pp. 1377–1388, Feb. 2010, doi: 10.1158/0008-5472.CAN-09-2598.
[45]
I. Cossu et al., ‘Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion’, Biomaterials, vol. 68, pp. 89–99, Nov. 2015, doi: 10.1016/j.biomaterials.2015.07.054.
[46]
A. E. Evans, E. Baum, and R. Chard, ‘Do infants with stage IV-S neuroblastoma need treatment?’, Archives of Disease in Childhood, vol. 56, no. 4, pp. 271–274, Apr. 1981, doi: 10.1136/adc.56.4.271.
[47]
L. Guglielmi et al., ‘MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells’, Cell Death & Disease, vol. 5, no. 2, pp. e1081–e1081, Feb. 2014, doi: 10.1038/cddis.2014.42.
[48]
M. Huang and W. A. Weiss, ‘Neuroblastoma and MYCN’, Cold Spring Harbor Perspectives in Medicine, vol. 3, no. 10, pp. a014415–a014415, Oct. 2013, doi: 10.1101/cshperspect.a014415.
[49]
K. Huber, C. Kalcheim, and K. Unsicker, ‘The development of the chromaffin cell lineage from the neural crest’, Autonomic Neuroscience, vol. 151, no. 1, pp. 10–16, Nov. 2009, doi: 10.1016/j.autneu.2009.07.020.
[50]
Z. Liu and C. J. Thiele, ‘ALK and MYCN: When Two Oncogenes Are Better than One’, Cancer Cell, vol. 21, no. 3, pp. 325–326, Mar. 2012, doi: 10.1016/j.ccr.2012.03.004.
[51]
A. Marabelle, V. Sapin, R. Rousseau, B. Periquet, F. Demeocq, and J. Kanold, ‘Hypercalcemia and 13-                              -retinoic acid in post-consolidation therapy of neuroblastoma’, Pediatric Blood & Cancer, vol. 52, no. 2, pp. 280–283, Feb. 2009, doi: 10.1002/pbc.21768.
[52]
K. K. Matthay et al., ‘Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-                              -Retinoic Acid’, New England Journal of Medicine, vol. 341, no. 16, pp. 1165–1173, Oct. 1999, doi: 10.1056/NEJM199910143411601.
[53]
Y. P. Mossé et al., ‘Identification of ALK as a major familial neuroblastoma predisposition gene’, Nature, vol. 455, no. 7215, pp. 930–935, Oct. 2008, doi: 10.1038/nature07261.
[54]
F. Pastorino et al., ‘Ligand-Targeted Liposomal Therapies of Neuroblastoma’, Current Medicinal Chemistry, vol. 14, no. 29, pp. 3070–3078, Dec. 2007, doi: 10.2174/092986707782793916.
[55]
J. Qiao et al., ‘PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation’, Biochemical and Biophysical Research Communications, vol. 424, no. 3, pp. 421–426, Aug. 2012, doi: 10.1016/j.bbrc.2012.06.125.
[56]
C. P. Reynolds, K. K. Matthay, J. G. Villablanca, and B. J. Maurer, ‘Retinoid therapy of high-risk neuroblastoma’, Cancer Letters, vol. 197, no. 1–2, pp. 185–192, Jul. 2003, doi: 10.1016/S0304-3835(03)00108-3.
[57]
M. Schwab, ‘MYCN in neuronal tumours’, Cancer Letters, vol. 204, no. 2, pp. 179–187, Feb. 2004, doi: 10.1016/S0304-3835(03)00454-3.
[58]
N. Sidell, ‘Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells In Vitro’, JNCI: Journal of the National Cancer Institute, 1982, doi: 10.1093/jnci/68.4.589.
[59]
B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz, and K. W. Kinzler, ‘Cancer Genome Landscapes’, Science, vol. 339, no. 6127, pp. 1546–1558, Mar. 2013, doi: 10.1126/science.1235122.
[60]
J. H. Wright, ‘NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED’, The Journal of Experimental Medicine, vol. 12, no. 4, 1910, doi: 10.1084/jem.12.4.556.
[61]
Yang, LiqunKe, Xiao-XueXuan, FanTan, JuanHou, Jianbing, ‘PHOX2B Is Associated with Neuroblastoma Cell Differentiation’, Cancer Biotherapy & Radiopharmaceuticals, vol. 31, pp. 44–51, doi: 10.1089/cbr.2015.1952. [Online]. Available: https://search.proquest.com/docview/1776665507?rfr_id=info%3Axri%2Fsid%3Aprimo
[62]
S. Zhu et al., ‘Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis’, Cancer Cell, vol. 21, no. 3, pp. 362–373, Mar. 2012, doi: 10.1016/j.ccr.2012.02.010.
[63]
H. Hasle and C. M. Niemeyer, ‘Advances in the prognostication and management of advanced MDS in children’, British Journal of Haematology, vol. 154, no. 2, pp. 185–195, Jul. 2011, doi: 10.1111/j.1365-2141.2011.08724.x.
[64]
C. M. Niemeyer and C. P. Kratz, ‘Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options’, British Journal of Haematology, vol. 140, no. 6, pp. 610–624, Mar. 2008, doi: 10.1111/j.1365-2141.2007.06958.x.
[65]
T. Wegman-Ostrosky and S. A. Savage, ‘The genomics of inherited bone marrow failure: from mechanism to the clinic’, British Journal of Haematology, vol. 177, no. 4, pp. 526–542, May 2017, doi: 10.1111/bjh.14535.
[66]
K. Strebhardt and A. Ullrich, ‘Paul Ehrlich’s magic bullet concept: 100 years of progress’, Nature Reviews Cancer, vol. 8, no. 6, pp. 473–480, Jun. 2008, doi: 10.1038/nrc2394.
[67]
C. M. Koebel et al., ‘Adaptive immunity maintains occult cancer in an equilibrium state’, Nature, vol. 450, no. 7171, pp. 903–907, Dec. 2007, doi: 10.1038/nature06309.
[68]
C. L. Mackall, M. S. Merchant, and T. J. Fry, ‘Immune-based therapies for childhood cancer’, Nature Reviews Clinical Oncology, vol. 11, no. 12, pp. 693–703, Dec. 2014, doi: 10.1038/nrclinonc.2014.177.
[69]
C. A. Klebanoff, S. A. Rosenberg, and N. P. Restifo, ‘Prospects for gene-engineered T cell immunotherapy for solid cancers’, Nature Medicine, vol. 22, no. 1, pp. 26–36, Jan. 2016, doi: 10.1038/nm.4015.
[70]
‘Nature Reviews Immunology’, vol. 12, no. 4, 2012 [Online]. Available: https://www.nature.com/nri/volumes/12/issues/4
[71]
R. G. Majzner, S. Heitzeneder, and C. L. Mackall, ‘Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers’, Cancer Cell, vol. 31, no. 4, pp. 476–485, Apr. 2017, doi: 10.1016/j.ccell.2017.03.002.
[72]
M. F. Greaves and J. Wiemels, ‘Origins of chromosome translocations in childhood leukaemia’, Nature Reviews Cancer, vol. 3, no. 9, pp. 639–649, Sep. 2003, doi: 10.1038/nrc1164.
[73]
A. Zelent, M. Greaves, and T. Enver, ‘Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia’, Oncogene, vol. 23, no. 24, pp. 4275–4283, May 2004, doi: 10.1038/sj.onc.1207672.
[74]
R. K. Slany, ‘The molecular mechanics of mixed lineage leukemia’, Oncogene, vol. 35, no. 40, pp. 5215–5223, Oct. 2016, doi: 10.1038/onc.2016.30.
[75]
T. A. Milne, ‘Mouse models of MLL leukemia: recapitulating the human disease’, Blood, vol. 129, no. 16, pp. 2217–2223, Apr. 2017, doi: 10.1182/blood-2016-10-691428.
[76]
M. Sadelain, I. Rivière, and S. Riddell, ‘Therapeutic T cell engineering’, Nature, vol. 545, no. 7655, pp. 423–431, May 2017, doi: 10.1038/nature22395.
[77]
L. A. Johnson and C. H. June, ‘Driving gene-engineered T cell immunotherapy of cancer’, Cell Research, vol. 27, no. 1, pp. 38–58, Jan. 2017, doi: 10.1038/cr.2016.154.
[78]
C. S. M. Yong, V. Dardalhon, C. Devaud, N. Taylor, P. K. Darcy, and M. H. Kershaw, ‘CAR T-cell therapy of solid tumors’, Immunology and Cell Biology, vol. 95, no. 4, pp. 356–363, Apr. 2017, doi: 10.1038/icb.2016.128.
[79]
J. Fisher et al., ‘Avoidance of On-Target Off-Tumor Activation Using a Co-stimulation-Only Chimeric Antigen Receptor’, Molecular Therapy, vol. 25, no. 5, pp. 1234–1247, May 2017, doi: 10.1016/j.ymthe.2017.03.002.
[80]
C. E. Brown et al., ‘Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy’, New England Journal of Medicine, vol. 375, no. 26, pp. 2561–2569, Dec. 2016, doi: 10.1056/NEJMoa1610497.
[81]
L. Morsut et al., ‘Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors’, Cell, vol. 164, no. 4, pp. 780–791, Feb. 2016, doi: 10.1016/j.cell.2016.01.012.
[82]
J. Rasaiyaah, C. Georgiadis, R. Preece, U. Mock, and W. Qasim, ‘TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy’, JCI Insight, vol. 3, no. 13, Jul. 2018, doi: 10.1172/jci.insight.99442.
[83]
S. Ghorashian, P. Amrolia, and P. Veys, ‘Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL’, Experimental Hematology, vol. 66, pp. 5–16, Oct. 2018, doi: 10.1016/j.exphem.2018.07.002.
[84]
W. Qasim et al., ‘Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells’, Science Translational Medicine, vol. 9, no. 374, Jan. 2017, doi: 10.1126/scitranslmed.aaj2013.
[85]
C. G. Hubert et al., ‘A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found’, Cancer Research, vol. 76, no. 8, pp. 2465–2477, Apr. 2016, doi: 10.1158/0008-5472.CAN-15-2402.
[86]
A. Richmond and Y. Su, ‘Mouse xenograft models vs GEM models for human cancer therapeutics’, Disease Models and Mechanisms, vol. 1, no. 2–3, pp. 78–82, Sep. 2008, doi: 10.1242/dmm.000976.
[87]
T. N. Phoenix et al., ‘Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype’, Cancer Cell, vol. 29, no. 4, pp. 508–522, Apr. 2016, doi: 10.1016/j.ccell.2016.03.002.
[88]
B. Lu, B. Green, J. Farr, F. Lopes, and T. Van Raay, ‘Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials’, Cancers, vol. 8, no. 9, Sep. 2016, doi: 10.3390/cancers8090082.
[89]
P. A. Northcott, A. Korshunov, S. M. Pfister, and M. D. Taylor, ‘The clinical implications of medulloblastoma subgroups’, Nature Reviews Neurology, vol. 8, no. 6, pp. 340–351, Jun. 2012, doi: 10.1038/nrneurol.2012.78.
[90]
M. V. Niklison-Chirou et al., ‘TAp73 is a marker of glutamine addiction in medulloblastoma’, Genes & Development, vol. 31, no. 17, pp. 1738–1753, Sep. 2017, doi: 10.1101/gad.302349.117.
[91]
C. S. Hourigan and J. E. Karp, ‘Minimal residual disease in acute myeloid leukaemia’, Nature Reviews Clinical Oncology, vol. 10, no. 8, pp. 460–471, Aug. 2013, doi: 10.1038/nrclinonc.2013.100.
[92]
M. Kotrova, J. Trka, M. Kneba, and M. Brüggemann, ‘Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia?’, Molecular Diagnosis & Therapy, vol. 21, no. 5, pp. 481–492, Oct. 2017, doi: 10.1007/s40291-017-0277-9.
[93]
D. O’Connor et al., ‘Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia’, Journal of Clinical Oncology, vol. 36, no. 1, pp. 34–43, Jan. 2018, doi: 10.1200/JCO.2017.74.0449.
[94]
A. Vora et al., ‘Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial’, The Lancet Oncology, vol. 14, no. 3, pp. 199–209, Mar. 2013, doi: 10.1016/S1470-2045(12)70600-9.
[95]
A. Vora et al., ‘Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial’, The Lancet Oncology, vol. 15, no. 8, pp. 809–818, Jul. 2014, doi: 10.1016/S1470-2045(14)70243-8.
[96]
S. P. Hunger and C. G. Mullighan, ‘Acute Lymphoblastic Leukemia in Children’, New England Journal of Medicine, vol. 373, no. 16, pp. 1541–1552, Oct. 2015, doi: 10.1056/NEJMra1400972.
[97]
D. O’Connor et al., ‘Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia’, Journal of Clinical Oncology, vol. 36, no. 1, pp. 34–43, Jan. 2018, doi: 10.1200/JCO.2017.74.0449.