Azarova, A.M., Gautam, G. and George, R.E. (2011) ‘Emerging importance of ALK in neuroblastoma’, Seminars in Cancer Biology, 21(4), pp. 267–275. Available at: https://doi.org/10.1016/j.semcancer.2011.09.005.
Beierle, E.A. (no date) ‘MYCN, Neuroblastoma and Focal Adhesion Kinase (FAK)’, Frontiers in bioscience (Elite edition), 3. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171213/.
Bell, E. et al. (2010) ‘MYCN oncoprotein targets and their therapeutic potential’, Cancer Letters, 293(2), pp. 144–157. Available at: https://doi.org/10.1016/j.canlet.2010.01.015.
Bender, S. et al. (2013) ‘Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas’, Cancer Cell, 24(5), pp. 660–672. Available at: https://doi.org/10.1016/j.ccr.2013.10.006.
Berry, T. et al. (2012) ‘The ALKF1174L Mutation Potentiates the Oncogenic Activity of MYCN in Neuroblastoma’, Cancer Cell, 22(1), pp. 117–130. Available at: https://doi.org/10.1016/j.ccr.2012.06.001.
Bleggi-Torres, L.F. et al. (2001) ‘Accuracy of the smear technique in the cytological diagnosis of 650 lesions of the central nervous system’, Diagnostic Cytopathology, 24(4), pp. 293–295. Available at: https://doi.org/10.1002/dc.1062.
Blümcke, I. et al. (2016) ‘Low-grade epilepsy-associated neuroepithelial tumours — the 2016 WHO classification’, Nature Reviews Neurology, 12(12), pp. 732–740. Available at: https://doi.org/10.1038/nrneurol.2016.173.
Brodeur, G.M. (2003) ‘Neuroblastoma: biological insights into a clinical enigma’, Nature Reviews Cancer, 3(3), pp. 203–216. Available at: https://doi.org/10.1038/nrc1014.
Brodeur, G.M. and Bagatell, R. (2014) ‘Mechanisms of neuroblastoma regression’, Nature Reviews Clinical Oncology, 11(12), pp. 704–713. Available at: https://doi.org/10.1038/nrclinonc.2014.168.
Brown, C.E. et al. (2016) ‘Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy’, New England Journal of Medicine, 375(26), pp. 2561–2569. Available at: https://doi.org/10.1056/NEJMoa1610497.
Buckner, T., Blatt, J. and Smith, S.V. (2006) ‘The Autopsy in Pediatrics and Pediatric Oncology: A Single-Institution Experience’, Pediatric and Developmental Pathology, 9(5), pp. 374–380. Available at: https://doi.org/10.2350/06-02-0047.1.
Burkhart, C.A. et al. (2003) ‘Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma’, JNCI Journal of the National Cancer Institute, 95(18), pp. 1394–1403. Available at: https://doi.org/10.1093/jnci/djg045.
Chen, L. et al. (2010) ‘p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma’, Cancer Research, 70(4), pp. 1377–1388. Available at: https://doi.org/10.1158/0008-5472.CAN-09-2598.
Chhabda, S. et al. (2016) ‘The 2016 World Health Organization Classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know’, Quantitative Imaging in Medicine and Surgery, 6(5), pp. 486–489. Available at: https://doi.org/10.21037/qims.2016.10.01.
Children’s cancer statistics | Cancer Research UK (no date). Available at: http://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers.
Cossu, I. et al. (2015) ‘Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion’, Biomaterials, 68, pp. 89–99. Available at: https://doi.org/10.1016/j.biomaterials.2015.07.054.
Ellison, D.W. et al. (2005) ‘β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee’, Journal of Clinical Oncology, 23(31), pp. 7951–7957. Available at: https://doi.org/10.1200/JCO.2005.01.5479.
Evans, A.E., Baum, E. and Chard, R. (1981) ‘Do infants with stage IV-S neuroblastoma need treatment?’, Archives of Disease in Childhood, 56(4), pp. 271–274. Available at: https://doi.org/10.1136/adc.56.4.271.
Fisher, J. et al. (2017) ‘Avoidance of On-Target Off-Tumor Activation Using a Co-stimulation-Only Chimeric Antigen Receptor’, Molecular Therapy, 25(5), pp. 1234–1247. Available at: https://doi.org/10.1016/j.ymthe.2017.03.002.
Garrett M. Brodeur, Robert C. Seeger, Manfred Schwab, Harold E. Varmus and J. Michael Bishop (1984) ‘Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage’, Science, 224(4653), pp. 1121–1124. Available at: http://www.jstor.org/stable/1692440.
Ghorashian, S., Amrolia, P. and Veys, P. (2018) ‘Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL’, Experimental Hematology, 66, pp. 5–16. Available at: https://doi.org/10.1016/j.exphem.2018.07.002.
Gibson, P. et al. (2010) ‘Subtypes of medulloblastoma have distinct developmental origins’, Nature, 468(7327), pp. 1095–1099. Available at: https://doi.org/10.1038/nature09587.
Goschzik, T. et al. (2017) ‘Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma’, Journal of Neuropathology & Experimental Neurology [Preprint]. Available at: https://doi.org/10.1093/jnen/nlw116.
Greaves, M.F. and Wiemels, J. (2003) ‘Origins of chromosome translocations in childhood leukaemia’, Nature Reviews Cancer, 3(9), pp. 639–649. Available at: https://doi.org/10.1038/nrc1164.
Guglielmi, L. et al. (2014) ‘MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells’, Cell Death & Disease, 5(2), pp. e1081–e1081. Available at: https://doi.org/10.1038/cddis.2014.42.
Gump, J.M. et al. (2015) ‘Identification of targets for rational pharmacological therapy in childhood craniopharyngioma’, Acta Neuropathologica Communications, 3(1). Available at: https://doi.org/10.1186/s40478-015-0211-5.
Hanahan, D. and Weinberg, R.A. (2000) ‘The Hallmarks of Cancer’, Cell, 100(1), pp. 57–70. Available at: https://doi.org/10.1016/S0092-8674(00)81683-9.
Hanahan, D. and Weinberg, R.A. (2011) ‘Hallmarks of Cancer: The Next Generation’, Cell, 144(5), pp. 646–674. Available at: https://doi.org/10.1016/j.cell.2011.02.013.
Hashizume, R. et al. (2014) ‘Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma’, Nature Medicine, 20(12), pp. 1394–1396. Available at: https://doi.org/10.1038/nm.3716.
Hasle, H. and Niemeyer, C.M. (2011) ‘Advances in the prognostication and management of advanced MDS in children’, British Journal of Haematology, 154(2), pp. 185–195. Available at: https://doi.org/10.1111/j.1365-2141.2011.08724.x.
Hill, R.M. et al. (2015) ‘Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease’, Cancer Cell, 27(1), pp. 72–84. Available at: https://doi.org/10.1016/j.ccell.2014.11.002.
Hourigan, C.S. and Karp, J.E. (2013) ‘Minimal residual disease in acute myeloid leukaemia’, Nature Reviews Clinical Oncology, 10(8), pp. 460–471. Available at: https://doi.org/10.1038/nrclinonc.2013.100.
Huang, M. and Weiss, W.A. (2013) ‘Neuroblastoma and MYCN’, Cold Spring Harbor Perspectives in Medicine, 3(10), pp. a014415–a014415. Available at: https://doi.org/10.1101/cshperspect.a014415.
Huber, K., Kalcheim, C. and Unsicker, K. (2009) ‘The development of the chromaffin cell lineage from the neural crest’, Autonomic Neuroscience, 151(1), pp. 10–16. Available at: https://doi.org/10.1016/j.autneu.2009.07.020.
Hubert, C.G. et al. (2016) ‘A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found’, Cancer Research, 76(8), pp. 2465–2477. Available at: https://doi.org/10.1158/0008-5472.CAN-15-2402.
Hunger, S.P. and Mullighan, C.G. (2015) ‘Acute Lymphoblastic Leukemia in Children’, New England Journal of Medicine, 373(16), pp. 1541–1552. Available at: https://doi.org/10.1056/NEJMra1400972.
International Agency for Research on Cancer (2016) WHO classification of tumours of the central nervous system. Revised 4th edition. Edited by D.N. Louis et al. Lyon: International Agency for Research on Cancer.
Johnson, L.A. and June, C.H. (2017) ‘Driving gene-engineered T cell immunotherapy of cancer’, Cell Research, 27(1), pp. 38–58. Available at: https://doi.org/10.1038/cr.2016.154.
Kirsti Sirkiä, Ulla M. Saarinen‐Pihkala, Liisa Hovi, Hannu Sariola (1998) ‘Autopsy in children with cancer who die while in terminal care’, Medical and Pediatric Oncology, 30(5), pp. 284–289. Available at: https://doi.org/10.1002/(SICI)1096-911X(199805)30:5<284::AID-MPO4>3.0.CO;2-B.
Klebanoff, C.A., Rosenberg, S.A. and Restifo, N.P. (2016) ‘Prospects for gene-engineered T cell immunotherapy for solid cancers’, Nature Medicine, 22(1), pp. 26–36. Available at: https://doi.org/10.1038/nm.4015.
Koebel, C.M. et al. (2007) ‘Adaptive immunity maintains occult cancer in an equilibrium state’, Nature, 450(7171), pp. 903–907. Available at: https://doi.org/10.1038/nature06309.
Korshunov, AndreySturm, DominikRyzhova, MarinaHovestadt, VolkerGessi, Marco (no date) ‘Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity’, Acta Neuropathologica, 128(8), pp. 279–89. Available at: https://search.proquest.com/docview/1545765655?OpenUrlRefId=info:xri/sid:primo&amp;accountid=14511.
Kotrova, M. et al. (2017) ‘Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia?’, Molecular Diagnosis & Therapy, 21(5), pp. 481–492. Available at: https://doi.org/10.1007/s40291-017-0277-9.
Larson, J.D. et al. (2018) ‘Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression’, Cancer Cell [Preprint]. Available at: https://doi.org/10.1016/j.ccell.2018.11.015.
Lee, T.I. and Young, R.A. (2013) ‘Transcriptional Regulation and Its Misregulation in Disease’, Cell, 152(6), pp. 1237–1251. Available at: https://doi.org/10.1016/j.cell.2013.02.014.
Lewis, P.W. et al. (2013) ‘Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma’, Science, 340(6134), pp. 857–861. Available at: https://doi.org/10.1126/science.1232245.
Liu, Z. and Thiele, C.J. (2012) ‘ALK and MYCN: When Two Oncogenes Are Better than One’, Cancer Cell, 21(3), pp. 325–326. Available at: https://doi.org/10.1016/j.ccr.2012.03.004.
Lord, C.J. and Ashworth, A. (2010) ‘Biology-driven cancer drug development: back to the future’, BMC Biology, 8(1). Available at: https://doi.org/10.1186/1741-7007-8-38.
Lu, B. et al. (2016) ‘Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials’, Cancers, 8(9). Available at: https://doi.org/10.3390/cancers8090082.
Mackall, C.L., Merchant, M.S. and Fry, T.J. (2014) ‘Immune-based therapies for childhood cancer’, Nature Reviews Clinical Oncology, 11(12), pp. 693–703. Available at: https://doi.org/10.1038/nrclinonc.2014.177.
Majzner, R.G., Heitzeneder, S. and Mackall, C.L. (2017) ‘Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers’, Cancer Cell, 31(4), pp. 476–485. Available at: https://doi.org/10.1016/j.ccell.2017.03.002.
Marabelle, A. et al. (2009) ‘Hypercalcemia and 13-                              -retinoic acid in post-consolidation therapy of neuroblastoma’, Pediatric Blood & Cancer, 52(2), pp. 280–283. Available at: https://doi.org/10.1002/pbc.21768.
Martinez-Barbera, J.P. and Andoniadou, C.L. (2016) ‘Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma’, STEM CELLS, 34(2), pp. 268–276. Available at: https://doi.org/10.1002/stem.2267.
Martinez-Barbera, J.P. and Buslei, R. (2015) ‘Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models’, Journal of Pediatric Endocrinology and Metabolism, 28(1–2). Available at: https://doi.org/10.1515/jpem-2014-0442.
Matthay, K.K. et al. (1999) ‘Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-                              -Retinoic Acid’, New England Journal of Medicine, 341(16), pp. 1165–1173. Available at: https://doi.org/10.1056/NEJM199910143411601.
Milne, T.A. (2017) ‘Mouse models of MLL leukemia: recapitulating the human disease’, Blood, 129(16), pp. 2217–2223. Available at: https://doi.org/10.1182/blood-2016-10-691428.
Morsut, L. et al. (2016) ‘Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors’, Cell, 164(4), pp. 780–791. Available at: https://doi.org/10.1016/j.cell.2016.01.012.
Mossé, Y.P. et al. (2008) ‘Identification of ALK as a major familial neuroblastoma predisposition gene’, Nature, 455(7215), pp. 930–935. Available at: https://doi.org/10.1038/nature07261.
Nataliya Zhukova (2013) ‘Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma’, Journal of Clinical Oncology, 31(23). Available at: https://doi.org/10.1200/JCO.2012.48.5052.
‘Nature Reviews Immunology’ (2012), 12(4). Available at: https://www.nature.com/nri/volumes/12/issues/4.
Niemeyer, C.M. and Kratz, C.P. (2008) ‘Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options’, British Journal of Haematology, 140(6), pp. 610–624. Available at: https://doi.org/10.1111/j.1365-2141.2007.06958.x.
Niklison-Chirou, M.V. et al. (2017) ‘TAp73 is a marker of glutamine addiction in medulloblastoma’, Genes & Development, 31(17), pp. 1738–1753. Available at: https://doi.org/10.1101/gad.302349.117.
Northcott, P.A. et al. (2012) ‘The clinical implications of medulloblastoma subgroups’, Nature Reviews Neurology, 8(6), pp. 340–351. Available at: https://doi.org/10.1038/nrneurol.2012.78.
O’Connor, D. et al. (2018a) ‘Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia’, Journal of Clinical Oncology, 36(1), pp. 34–43. Available at: https://doi.org/10.1200/JCO.2017.74.0449.
O’Connor, D. et al. (2018b) ‘Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia’, Journal of Clinical Oncology, 36(1), pp. 34–43. Available at: https://doi.org/10.1200/JCO.2017.74.0449.
Pastorino, F. et al. (2007) ‘Ligand-Targeted Liposomal Therapies of Neuroblastoma’, Current Medicinal Chemistry, 14(29), pp. 3070–3078. Available at: https://doi.org/10.2174/092986707782793916.
Pathania, M. et al. (2017) ‘H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas’, Cancer Cell, 32(5), pp. 684-700.e9. Available at: https://doi.org/10.1016/j.ccell.2017.09.014.
Pfister, S. et al. (2009) ‘Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes’, Acta Neuropathologica, 117(4), pp. 457–464. Available at: https://doi.org/10.1007/s00401-008-0467-y.
Phoenix, T.N. et al. (2016) ‘Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype’, Cancer Cell, 29(4), pp. 508–522. Available at: https://doi.org/10.1016/j.ccell.2016.03.002.
Qasim, W. et al. (2017) ‘Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells’, Science Translational Medicine, 9(374). Available at: https://doi.org/10.1126/scitranslmed.aaj2013.
Qiao, J. et al. (2012) ‘PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation’, Biochemical and Biophysical Research Communications, 424(3), pp. 421–426. Available at: https://doi.org/10.1016/j.bbrc.2012.06.125.
Rasaiyaah, J. et al. (2018) ‘TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy’, JCI Insight, 3(13). Available at: https://doi.org/10.1172/jci.insight.99442.
Reynolds, C.P. et al. (2003) ‘Retinoid therapy of high-risk neuroblastoma’, Cancer Letters, 197(1–2), pp. 185–192. Available at: https://doi.org/10.1016/S0304-3835(03)00108-3.
Richmond, A. and Su, Y. (2008) ‘Mouse xenograft models vs GEM models for human cancer therapeutics’, Disease Models and Mechanisms, 1(2–3), pp. 78–82. Available at: https://doi.org/10.1242/dmm.000976.
Sadelain, M., Rivière, I. and Riddell, S. (2017) ‘Therapeutic T cell engineering’, Nature, 545(7655), pp. 423–431. Available at: https://doi.org/10.1038/nature22395.
Schwab, M. (2004) ‘MYCN in neuronal tumours’, Cancer Letters, 204(2), pp. 179–187. Available at: https://doi.org/10.1016/S0304-3835(03)00454-3.
Schwalbe, E.C. et al. (2017) ‘Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study’, The Lancet Oncology, 18(7), pp. 958–971. Available at: https://doi.org/10.1016/S1470-2045(17)30243-7.
Schwalbe, Ed.C. et al. (2013) ‘Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types’, Acta Neuropathologica, 126(6), pp. 943–946. Available at: https://doi.org/10.1007/s00401-013-1206-6.
Schwartzentruber, J. et al. (2012) ‘Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma’, Nature, 482(7384), pp. 226–231. Available at: https://doi.org/10.1038/nature10833.
Sidell, N. (1982) ‘Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells In Vitro’, JNCI: Journal of the National Cancer Institute [Preprint]. Available at: https://doi.org/10.1093/jnci/68.4.589.
Slany, R.K. (2016) ‘The molecular mechanics of mixed lineage leukemia’, Oncogene, 35(40), pp. 5215–5223. Available at: https://doi.org/10.1038/onc.2016.30.
Stone, T.J. and Jacques, T.S. (2015) ‘Medulloblastoma: selecting children for reduced treatment’, Neuropathology and Applied Neurobiology, 41(2), pp. 106–108. Available at: https://doi.org/10.1111/nan.12193.
Strebhardt, K. and Ullrich, A. (2008) ‘Paul Ehrlich’s magic bullet concept: 100 years of progress’, Nature Reviews Cancer, 8(6), pp. 473–480. Available at: https://doi.org/10.1038/nrc2394.
Sturm, D. et al. (2012) ‘Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma’, Cancer Cell, 22(4), pp. 425–437. Available at: https://doi.org/10.1016/j.ccr.2012.08.024.
Sturm, D. et al. (2016) ‘New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs’, Cell, 164(5), pp. 1060–1072. Available at: https://doi.org/10.1016/j.cell.2016.01.015.
Taylor, Michael DNorthcott, Paul AKorshunov, AndreyRemke, MarcCho, Yoon-jae (no date) ‘Molecular subgroups of medulloblastoma: the current consensus’, Acta Neuropathologica, 123(3), pp. 465–72. Available at: https://search.proquest.com/docview/928783888?rfr_id=info%3Axri%2Fsid%3Aprimo.
Vogelstein, B. et al. (2013a) ‘Cancer Genome Landscapes’, Science, 339(6127), pp. 1546–1558. Available at: https://doi.org/10.1126/science.1235122.
Vogelstein, B. et al. (2013b) ‘Cancer Genome Landscapes’, Science, 339(6127), pp. 1546–1558. Available at: https://doi.org/10.1126/science.1235122.
Vora, A. et al. (2013) ‘Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial’, The Lancet Oncology, 14(3), pp. 199–209. Available at: https://doi.org/10.1016/S1470-2045(12)70600-9.
Vora, A. et al. (2014) ‘Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial’, The Lancet Oncology, 15(8), pp. 809–818. Available at: https://doi.org/10.1016/S1470-2045(14)70243-8.
Wegman-Ostrosky, T. and Savage, S.A. (2017) ‘The genomics of inherited bone marrow failure: from mechanism to the clinic’, British Journal of Haematology, 177(4), pp. 526–542. Available at: https://doi.org/10.1111/bjh.14535.
Weinberg, R.A. (2014) The biology of cancer. 2nd ed. New York: Garland Science.
Wright, J.H. (1910) ‘NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED’, The Journal of Experimental Medicine, 12(4). Available at: https://doi.org/10.1084/jem.12.4.556.
Yang, LiqunKe, Xiao-XueXuan, FanTan, JuanHou, Jianbing (no date) ‘PHOX2B Is Associated with Neuroblastoma Cell Differentiation’, Cancer Biotherapy & Radiopharmaceuticals, 31, pp. 44–51. Available at: https://doi.org/10.1089/cbr.2015.1952.
Yong, C.S.M. et al. (2017) ‘CAR T-cell therapy of solid tumors’, Immunology and Cell Biology, 95(4), pp. 356–363. Available at: https://doi.org/10.1038/icb.2016.128.
Zelent, A., Greaves, M. and Enver, T. (2004) ‘Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia’, Oncogene, 23(24), pp. 4275–4283. Available at: https://doi.org/10.1038/sj.onc.1207672.
Zhu, S. et al. (2012) ‘Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis’, Cancer Cell, 21(3), pp. 362–373. Available at: https://doi.org/10.1016/j.ccr.2012.02.010.