Azarova, Anna M., Gargi Gautam, and Rani E. George, ‘Emerging Importance of ALK in Neuroblastoma’, Seminars in Cancer Biology, 21.4 (2011), pp. 267–75, doi:10.1016/j.semcancer.2011.09.005
Beierle, Elizabeth A., ‘MYCN, Neuroblastoma and Focal Adhesion Kinase (FAK)’, Frontiers in Bioscience (Elite Edition), 3 (n.d.) <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171213/>
Bell, Emma, and others, ‘MYCN Oncoprotein Targets and Their Therapeutic Potential’, Cancer Letters, 293.2 (2010), pp. 144–57, doi:10.1016/j.canlet.2010.01.015
Bender, Sebastian, and others, ‘Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas’, Cancer Cell, 24.5 (2013), pp. 660–72, doi:10.1016/j.ccr.2013.10.006
Berry, Teeara, and others, ‘The ALKF1174L Mutation Potentiates the Oncogenic Activity of MYCN in Neuroblastoma’, Cancer Cell, 22.1 (2012), pp. 117–30, doi:10.1016/j.ccr.2012.06.001
Bleggi-Torres, Luiz Fernando, and others, ‘Accuracy of the Smear Technique in the Cytological Diagnosis of 650 Lesions of the Central Nervous System’, Diagnostic Cytopathology, 24.4 (2001), pp. 293–95, doi:10.1002/dc.1062
Blümcke, Ingmar, and others, ‘Low-Grade Epilepsy-Associated Neuroepithelial Tumours — the 2016 WHO Classification’, Nature Reviews Neurology, 12.12 (2016), pp. 732–40, doi:10.1038/nrneurol.2016.173
Brodeur, Garrett M., ‘Neuroblastoma: Biological Insights into a Clinical Enigma’, Nature Reviews Cancer, 3.3 (2003), pp. 203–16, doi:10.1038/nrc1014
——, and Rochelle Bagatell, ‘Mechanisms of Neuroblastoma Regression’, Nature Reviews Clinical Oncology, 11.12 (2014), pp. 704–13, doi:10.1038/nrclinonc.2014.168
Brown, Christine E., and others, ‘Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy’, New England Journal of Medicine, 375.26 (2016), pp. 2561–69, doi:10.1056/NEJMoa1610497
Buckner, Tyler, Julie Blatt, and Scott Victor Smith, ‘The Autopsy in Pediatrics and Pediatric Oncology: A Single-Institution Experience’, Pediatric and Developmental Pathology, 9.5 (2006), pp. 374–80, doi:10.2350/06-02-0047.1
Burkhart, C. A., and others, ‘Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma’, JNCI Journal of the National Cancer Institute, 95.18 (2003), pp. 1394–403, doi:10.1093/jnci/djg045
Chen, L., and others, ‘P53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma’, Cancer Research, 70.4 (2010), pp. 1377–88, doi:10.1158/0008-5472.CAN-09-2598
Chhabda, Sahil, and others, ‘The 2016 World Health Organization Classification of Tumours of the Central Nervous System: What the Paediatric Neuroradiologist Needs to Know’, Quantitative Imaging in Medicine and Surgery, 6.5 (2016), pp. 486–89, doi:10.21037/qims.2016.10.01
‘Children’s Cancer Statistics | Cancer Research UK’, n.d. <http://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers>
Cossu, Irene, and others, ‘Neuroblastoma-Targeted Nanocarriers Improve Drug Delivery and Penetration, Delay Tumor Growth and Abrogate Metastatic Diffusion’, Biomaterials, 68 (2015), pp. 89–99, doi:10.1016/j.biomaterials.2015.07.054
Ellison, David W., and others, ‘β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee’, Journal of Clinical Oncology, 23.31 (2005), pp. 7951–57, doi:10.1200/JCO.2005.01.5479
Evans, A E, E Baum, and R Chard, ‘Do Infants with Stage IV-S Neuroblastoma Need Treatment?’, Archives of Disease in Childhood, 56.4 (1981), pp. 271–74, doi:10.1136/adc.56.4.271
Fisher, Jonathan, and others, ‘Avoidance of On-Target Off-Tumor Activation Using a Co-Stimulation-Only Chimeric Antigen Receptor’, Molecular Therapy, 25.5 (2017), pp. 1234–47, doi:10.1016/j.ymthe.2017.03.002
Garrett M. Brodeur, Robert C. Seeger, Manfred Schwab, Harold E. Varmus and J. Michael Bishop, ‘Amplification of N-Myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage’, Science, 224.4653 (1984), pp. 1121–24 <http://www.jstor.org/stable/1692440>
Ghorashian, Sara, Persis Amrolia, and Paul Veys, ‘Open Access? Widening Access to Chimeric Antigen Receptor (CAR) Therapy for ALL’, Experimental Hematology, 66 (2018), pp. 5–16, doi:10.1016/j.exphem.2018.07.002
Gibson, Paul, and others, ‘Subtypes of Medulloblastoma Have Distinct Developmental Origins’, Nature, 468.7327 (2010), pp. 1095–99, doi:10.1038/nature09587
Goschzik, Tobias, and others, ‘Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma’, Journal of Neuropathology & Experimental Neurology, published online 9 January 2017, doi:10.1093/jnen/nlw116
Greaves, Mel F., and Joe Wiemels, ‘Origins of Chromosome Translocations in Childhood Leukaemia’, Nature Reviews Cancer, 3.9 (2003), pp. 639–49, doi:10.1038/nrc1164
Guglielmi, L, and others, ‘MYCN Gene Expression Is Required for the Onset of the Differentiation Programme in Neuroblastoma Cells’, Cell Death & Disease, 5.2 (2014), pp. e1081–e1081, doi:10.1038/cddis.2014.42
Gump, Jacob M, and others, ‘Identification of Targets for Rational Pharmacological Therapy in Childhood Craniopharyngioma’, Acta Neuropathologica Communications, 3.1 (2015), doi:10.1186/s40478-015-0211-5
Hanahan, Douglas, and Robert A Weinberg, ‘The Hallmarks of Cancer’, Cell, 100.1 (2000), pp. 57–70, doi:10.1016/S0092-8674(00)81683-9
——, and Robert A. Weinberg, ‘Hallmarks of Cancer: The Next Generation’, Cell, 144.5 (2011), pp. 646–74, doi:10.1016/j.cell.2011.02.013
Hashizume, Rintaro, and others, ‘Pharmacologic Inhibition of Histone Demethylation as a Therapy for Pediatric Brainstem Glioma’, Nature Medicine, 20.12 (2014), pp. 1394–96, doi:10.1038/nm.3716
Hasle, Henrik, and Charlotte M. Niemeyer, ‘Advances in the Prognostication and Management of Advanced MDS in Children’, British Journal of Haematology, 154.2 (2011), pp. 185–95, doi:10.1111/j.1365-2141.2011.08724.x
Hill, Rebecca M., and others, ‘Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease’, Cancer Cell, 27.1 (2015), pp. 72–84, doi:10.1016/j.ccell.2014.11.002
Hourigan, Christopher S., and Judith E. Karp, ‘Minimal Residual Disease in Acute Myeloid Leukaemia’, Nature Reviews Clinical Oncology, 10.8 (2013), pp. 460–71, doi:10.1038/nrclinonc.2013.100
Huang, M., and W. A. Weiss, ‘Neuroblastoma and MYCN’, Cold Spring Harbor Perspectives in Medicine, 3.10 (2013), pp. a014415–a014415, doi:10.1101/cshperspect.a014415
Huber, Katrin, Chaya Kalcheim, and Klaus Unsicker, ‘The Development of the Chromaffin Cell Lineage from the Neural Crest’, Autonomic Neuroscience, 151.1 (2009), pp. 10–16, doi:10.1016/j.autneu.2009.07.020
Hubert, Christopher G., and others, ‘A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found’, Cancer Research, 76.8 (2016), pp. 2465–77, doi:10.1158/0008-5472.CAN-15-2402
Hunger, Stephen P., and Charles G. Mullighan, ‘Acute Lymphoblastic Leukemia in Children’, New England Journal of Medicine, 373.16 (2015), pp. 1541–52, doi:10.1056/NEJMra1400972
International Agency for Research on Cancer, WHO Classification of Tumours of the Central Nervous System, ed. by David N. Louis and others, Revised 4th edition (International Agency for Research on Cancer, 2016)
Johnson, Laura A, and Carl H June, ‘Driving Gene-Engineered T Cell Immunotherapy of Cancer’, Cell Research, 27.1 (2017), pp. 38–58, doi:10.1038/cr.2016.154
Kirsti Sirkiä, Ulla M. Saarinen‐Pihkala, Liisa Hovi, Hannu Sariola, ‘Autopsy in Children with Cancer Who Die While in Terminal Care’, Medical and Pediatric Oncology, 30.5 (1998), pp. 284–89, doi:10.1002/(SICI)1096-911X(199805)30:5<284::AID-MPO4>3.0.CO;2-B
Klebanoff, Christopher A, Steven A Rosenberg, and Nicholas P Restifo, ‘Prospects for Gene-Engineered T Cell Immunotherapy for Solid Cancers’, Nature Medicine, 22.1 (2016), pp. 26–36, doi:10.1038/nm.4015
Koebel, Catherine M., and others, ‘Adaptive Immunity Maintains Occult Cancer in an Equilibrium State’, Nature, 450.7171 (2007), pp. 903–07, doi:10.1038/nature06309
Korshunov, AndreySturm, DominikRyzhova, MarinaHovestadt, VolkerGessi, Marco, ‘Embryonal Tumor with Abundant Neuropil and True Rosettes (ETANTR), Ependymoblastoma, and Medulloepithelioma Share Molecular Similarity and Comprise a Single Clinicopathological Entity’, Acta Neuropathologica, 128.8 (n.d.), pp. 279–89 <https://search.proquest.com/docview/1545765655?OpenUrlRefId=info:xri/sid:primo&accountid=14511>
Kotrova, Michaela, and others, ‘Is Next-Generation Sequencing the Way to Go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia?’, Molecular Diagnosis & Therapy, 21.5 (2017), pp. 481–92, doi:10.1007/s40291-017-0277-9
Larson, Jon D., and others, ‘Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression’, Cancer Cell, published online December 2018, doi:10.1016/j.ccell.2018.11.015
Lee, Tong Ihn, and Richard A. Young, ‘Transcriptional Regulation and Its Misregulation in Disease’, Cell, 152.6 (2013), pp. 1237–51, doi:10.1016/j.cell.2013.02.014
Lewis, P. W., and others, ‘Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma’, Science, 340.6134 (2013), pp. 857–61, doi:10.1126/science.1232245
Liu, Zhihui, and Carol J. Thiele, ‘ALK and MYCN: When Two Oncogenes Are Better than One’, Cancer Cell, 21.3 (2012), pp. 325–26, doi:10.1016/j.ccr.2012.03.004
Lord, Christopher J, and Alan Ashworth, ‘Biology-Driven Cancer Drug Development: Back to the Future’, BMC Biology, 8.1 (2010), doi:10.1186/1741-7007-8-38
Lu, Benjamin, and others, ‘Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials’, Cancers, 8.9 (2016), doi:10.3390/cancers8090082
Mackall, Crystal L., Melinda S. Merchant, and Terry J. Fry, ‘Immune-Based Therapies for Childhood Cancer’, Nature Reviews Clinical Oncology, 11.12 (2014), pp. 693–703, doi:10.1038/nrclinonc.2014.177
Majzner, Robbie G., Sabine Heitzeneder, and Crystal L. Mackall, ‘Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers’, Cancer Cell, 31.4 (2017), pp. 476–85, doi:10.1016/j.ccell.2017.03.002
Marabelle, Aurélien, and others, ‘Hypercalcemia and 13- -Retinoic Acid in Post-Consolidation Therapy of Neuroblastoma’, Pediatric Blood & Cancer, 52.2 (2009), pp. 280–83, doi:10.1002/pbc.21768
Martinez-Barbera, Juan Pedro, and Cynthia L. Andoniadou, ‘Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma’, STEM CELLS, 34.2 (2016), pp. 268–76, doi:10.1002/stem.2267
——, and Rolf Buslei, ‘Adamantinomatous Craniopharyngioma: Pathology, Molecular Genetics and Mouse Models’, Journal of Pediatric Endocrinology and Metabolism, 28.1–2 (2015), doi:10.1515/jpem-2014-0442
Matthay, Katherine K., and others, ‘Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13- -Retinoic Acid’, New England Journal of Medicine, 341.16 (1999), pp. 1165–73, doi:10.1056/NEJM199910143411601
Milne, Thomas A., ‘Mouse Models of MLL Leukemia: Recapitulating the Human Disease’, Blood, 129.16 (2017), pp. 2217–23, doi:10.1182/blood-2016-10-691428
Morsut, Leonardo, and others, ‘Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors’, Cell, 164.4 (2016), pp. 780–91, doi:10.1016/j.cell.2016.01.012
Mossé, Yaël P., and others, ‘Identification of ALK as a Major Familial Neuroblastoma Predisposition Gene’, Nature, 455.7215 (2008), pp. 930–35, doi:10.1038/nature07261
Nataliya Zhukova, ‘Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma’, Journal of Clinical Oncology, 31.23 (2013), doi:10.1200/JCO.2012.48.5052
Nature Reviews Immunology, 12.4 (2012) <https://www.nature.com/nri/volumes/12/issues/4>
Niemeyer, Charlotte Marie, and Christian Peter Kratz, ‘Paediatric Myelodysplastic Syndromes and Juvenile Myelomonocytic Leukaemia: Molecular Classification and Treatment Options’, British Journal of Haematology, 140.6 (2008), pp. 610–24, doi:10.1111/j.1365-2141.2007.06958.x
Niklison-Chirou, Maria Victoria, and others, ‘TAp73 Is a Marker of Glutamine Addiction in Medulloblastoma’, Genes & Development, 31.17 (2017), pp. 1738–53, doi:10.1101/gad.302349.117
Northcott, Paul A., and others, ‘The Clinical Implications of Medulloblastoma Subgroups’, Nature Reviews Neurology, 8.6 (2012), pp. 340–51, doi:10.1038/nrneurol.2012.78
O’Connor, David, and others, ‘Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia’, Journal of Clinical Oncology, 36.1 (2018), pp. 34–43, doi:10.1200/JCO.2017.74.0449
——, and others, ‘Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia’, Journal of Clinical Oncology, 36.1 (2018), pp. 34–43, doi:10.1200/JCO.2017.74.0449
Pastorino, Fabio, and others, ‘Ligand-Targeted Liposomal Therapies of Neuroblastoma’, Current Medicinal Chemistry, 14.29 (2007), pp. 3070–78, doi:10.2174/092986707782793916
Pathania, Manav, and others, ‘H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas’, Cancer Cell, 32.5 (2017), pp. 684-700.e9, doi:10.1016/j.ccell.2017.09.014
Pfister, Stefan, and others, ‘Novel Genomic Amplification Targeting the microRNA Cluster at 19q13.42 in a Pediatric Embryonal Tumor with Abundant Neuropil and True Rosettes’, Acta Neuropathologica, 117.4 (2009), pp. 457–64, doi:10.1007/s00401-008-0467-y
Phoenix, Timothy N., and others, ‘Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype’, Cancer Cell, 29.4 (2016), pp. 508–22, doi:10.1016/j.ccell.2016.03.002
Qasim, Waseem, and others, ‘Molecular Remission of Infant B-ALL after Infusion of Universal TALEN Gene-Edited CAR T Cells’, Science Translational Medicine, 9.374 (2017), doi:10.1126/scitranslmed.aaj2013
Qiao, Jingbo, and others, ‘PI3K/AKT and ERK Regulate Retinoic Acid-Induced Neuroblastoma Cellular Differentiation’, Biochemical and Biophysical Research Communications, 424.3 (2012), pp. 421–26, doi:10.1016/j.bbrc.2012.06.125
Rasaiyaah, Jane, and others, ‘TCRαβ/CD3 Disruption Enables CD3-Specific Antileukemic T Cell Immunotherapy’, JCI Insight, 3.13 (2018), doi:10.1172/jci.insight.99442
Reynolds, C.Patrick, and others, ‘Retinoid Therapy of High-Risk Neuroblastoma’, Cancer Letters, 197.1–2 (2003), pp. 185–92, doi:10.1016/S0304-3835(03)00108-3
Richmond, A., and Y. Su, ‘Mouse Xenograft Models vs GEM Models for Human Cancer Therapeutics’, Disease Models and Mechanisms, 1.2–3 (2008), pp. 78–82, doi:10.1242/dmm.000976
Sadelain, Michel, Isabelle Rivière, and Stanley Riddell, ‘Therapeutic T Cell Engineering’, Nature, 545.7655 (2017), pp. 423–31, doi:10.1038/nature22395
Schwab, M, ‘MYCN in Neuronal Tumours’, Cancer Letters, 204.2 (2004), pp. 179–87, doi:10.1016/S0304-3835(03)00454-3
Schwalbe, Ed. C., and others, ‘Histologically Defined Central Nervous System Primitive Neuro-Ectodermal Tumours (CNS-PNETs) Display Heterogeneous DNA Methylation Profiles and Show Relationships to Other Paediatric Brain Tumour Types’, Acta Neuropathologica, 126.6 (2013), pp. 943–46, doi:10.1007/s00401-013-1206-6
Schwalbe, Edward C, and others, ‘Novel Molecular Subgroups for Clinical Classification and Outcome Prediction in Childhood Medulloblastoma: A Cohort Study’, The Lancet Oncology, 18.7 (2017), pp. 958–71, doi:10.1016/S1470-2045(17)30243-7
Schwartzentruber, Jeremy, and others, ‘Driver Mutations in Histone H3.3 and Chromatin Remodelling Genes in Paediatric Glioblastoma’, Nature, 482.7384 (2012), pp. 226–31, doi:10.1038/nature10833
Sidell, Neil, ‘Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells In Vitro’, JNCI: Journal of the National Cancer Institute, published online 1982, doi:10.1093/jnci/68.4.589
Slany, R K, ‘The Molecular Mechanics of Mixed Lineage Leukemia’, Oncogene, 35.40 (2016), pp. 5215–23, doi:10.1038/onc.2016.30
Stone, T. J., and T. S. Jacques, ‘Medulloblastoma: Selecting Children for Reduced Treatment’, Neuropathology and Applied Neurobiology, 41.2 (2015), pp. 106–08, doi:10.1111/nan.12193
Strebhardt, Klaus, and Axel Ullrich, ‘Paul Ehrlich’s Magic Bullet Concept: 100 Years of Progress’, Nature Reviews Cancer, 8.6 (2008), pp. 473–80, doi:10.1038/nrc2394
Sturm, Dominik, and others, ‘Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma’, Cancer Cell, 22.4 (2012), pp. 425–37, doi:10.1016/j.ccr.2012.08.024
——, and others, ‘New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs’, Cell, 164.5 (2016), pp. 1060–72, doi:10.1016/j.cell.2016.01.015
Taylor, Michael DNorthcott, Paul AKorshunov, AndreyRemke, MarcCho, Yoon-jae, ‘Molecular Subgroups of Medulloblastoma: The Current Consensus’, Acta Neuropathologica, 123.3 (n.d.), pp. 465–72 <https://search.proquest.com/docview/928783888?rfr_id=info%3Axri%2Fsid%3Aprimo>
Vogelstein, B., and others, ‘Cancer Genome Landscapes’, Science, 339.6127 (2013), pp. 1546–58, doi:10.1126/science.1235122
——, and others, ‘Cancer Genome Landscapes’, Science, 339.6127 (2013), pp. 1546–58, doi:10.1126/science.1235122
Vora, Ajay, and others, ‘Augmented Post-Remission Therapy for a Minimal Residual Disease-Defined High-Risk Subgroup of Children and Young People with Clinical Standard-Risk and Intermediate-Risk Acute Lymphoblastic Leukaemia (UKALL 2003): A Randomised Controlled Trial’, The Lancet Oncology, 15.8 (2014), pp. 809–18, doi:10.1016/S1470-2045(14)70243-8
——, and others, ‘Treatment Reduction for Children and Young Adults with Low-Risk Acute Lymphoblastic Leukaemia Defined by Minimal Residual Disease (UKALL 2003): A Randomised Controlled Trial’, The Lancet Oncology, 14.3 (2013), pp. 199–209, doi:10.1016/S1470-2045(12)70600-9
Wegman-Ostrosky, Talia, and Sharon A. Savage, ‘The Genomics of Inherited Bone Marrow Failure: From Mechanism to the Clinic’, British Journal of Haematology, 177.4 (2017), pp. 526–42, doi:10.1111/bjh.14535
Weinberg, Robert A., The Biology of Cancer, 2nd ed (Garland Science, 2014)
Wright, James Homer, ‘NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED’, The Journal of Experimental Medicine, 12.4 (1910), doi:10.1084/jem.12.4.556
Yang, LiqunKe, Xiao-XueXuan, FanTan, JuanHou, Jianbing, ‘PHOX2B Is Associated with Neuroblastoma Cell Differentiation’, Cancer Biotherapy & Radiopharmaceuticals, 31 (n.d.), pp. 44–51, doi:10.1089/cbr.2015.1952
Yong, Carmen S M, and others, ‘CAR T-Cell Therapy of Solid Tumors’, Immunology and Cell Biology, 95.4 (2017), pp. 356–63, doi:10.1038/icb.2016.128
Zelent, Arthur, Mel Greaves, and Tariq Enver, ‘Role of the TEL-AML1 Fusion Gene in the Molecular Pathogenesis of Childhood Acute Lymphoblastic Leukaemia’, Oncogene, 23.24 (2004), pp. 4275–83, doi:10.1038/sj.onc.1207672
Zhu, Shizhen, and others, ‘Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis’, Cancer Cell, 21.3 (2012), pp. 362–73, doi:10.1016/j.ccr.2012.02.010